别再只看准确率了!分类模型评估的 6 个核心指标与实战指南:Macro/F1、OvR AUC

在机器学习的分类任务中,仅知道模型 "准确率" 是不够的。尤其是面对类别不平衡、多分类问题时,我们需要更全面的评估指标来衡量模型性能。本文将深入解析常用分类评估指标的数学原理,并结合 Python 代码示例进行演示。

一、基础评估指标

1. 混淆矩阵(Confusion Matrix)

混淆矩阵是分类评估的基础,它展示了模型预测结果与真实标签之间的关系。对于二分类问题,混淆矩阵如下:

真实 \ 预测 正例 (Predicted Positive) 反例 (Predicted Negative)
正例 (Actual Positive) 真正例 (TP) 假反例 (FN)
反例 (Actual Negative) 假正例 (FP) 真反例 (TN)
from sklearn.metrics import confusion_matrix

y_true = [1, 0, 1, 1, 0, 1]
y_pred = [1, 0, 0, 1, 0, 1]

cm = confusion_matrix(y_true, y_pred)
print("混淆矩阵:")
print(cm)

2. 准确率(Accuracy)

准确率是最直观的评估指标,表示模型正确预测的样本比例:

局限性:在类别不平衡的情况下,高准确率可能掩盖模型对少数类别的不良表现。

二、精确率、召回率与 F1 分数

1. 精确率(Precision)

精确率衡量模型预测为正例的样本中,实际为正例的比例:

应用场景:当假正例的代价很高时(如垃圾邮件检测),精确率更为重要。

2. 召回率(Recall)

召回率衡量实际为正例的样本中,被模型正确预测为正例的比例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小香猪6688

研究生自学分享不易,请多多鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值