什么是记忆搜索
记忆搜索(Memoization)是一种优化递归算法的技术,旨在通过存储已经计算过的结果来避免重复计算,从而提高算法的效率。记忆搜索通常结合递归来使用,可以在不改变递归逻辑的情况下显著提升性能。
主要思想
- 缓存结果:在第一次计算某个子问题的结果时,将其存储在一个数据结构(如数组、哈希表)中。
- 检查缓存:在后续调用中,首先检查该子问题的结果是否已经在缓存中存在。如果存在,则直接返回缓存的结果,而不再进行重复计算。
- 递归求解:如果缓存中不存在该子问题的结果,则继续递归求解,并将结果存储到缓存中。
优点
- 减少重复计算:通过缓存中间结果,避免了大量重复的计算工作。
- 保持递归简洁性:记忆搜索可以保持递归代码的简洁性和易读性,而不必改写成迭代形式。
缺点
- 额外的空间开销:需要额外的空间来存储缓存的数据。
- 递归深度限制:某些编程语言或环境对递归深度有限制,可能导致栈溢出。
示例
下面是一个使用记忆搜索的经典示例——斐波那契数列的计算:
普通递归
int fibonacci(int n) {
if (n <= 1) return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
记忆搜索
#include <vector>
using namespace std;
class Solution {
public:
vector<int> memo;
int fibonacci(int n) {
memo.assign(n + 1, -1); // 初始化缓存数组为 -1
return fibHelper(n);
}
private:
int fibHelper(int n) {
if (n <= 1) return n;
if (memo[n] != -1) return memo[n]; // 如果已经计算过,直接返回缓存结果
memo[n] = fibHelper(n - 1) + fibHelper(n - 2); // 计算并存储结果
return memo[n];
}
}