
时间序列预测
文章平均质量分 89
wlz249
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)
分析了算法计算次数的性能,特别是“前向生成”、“DARE”、“矩阵”、“反演”和“QPsteps”所需的平均计算时间,以及平均“不受约束”和“约束”,所有这些都在结果部分报告。标准多重射击NMPC,以及拟议的双模式多重射击NMPC。此外,如本文所述,考虑了两种不同的数值精度(浮点数和双精度数),以评估计算时间的好处。由此得出的结果与本文件表2的结果有关。本文 T 秒进行 N 次模拟,使用提出的使用多重拍摄的双模 NMPC 方案对倒立摆进行摆动和稳定。博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。原创 2023-03-04 21:40:26 · 145 阅读 · 0 评论 -
用于自适应识别和控制的前馈神经网络与在线顺序学习算法(Matlab代码实现)
包含用于实现在线顺序学习算法、元认知神经网络和用于自适应识别和控制的前馈神经网络的代码。这些方法还用于解决分类和时间序列预测问题。[1]谭永红.基于BP神经网络的自适应控制[J].控制理论与应用,1994(01):84-88.原创 2023-01-09 10:56:10 · 413 阅读 · 0 评论 -
用于宏观经济数据分析的神经网络(Matlab代码实现)
宏观经济时间序列的分析和预测是国家决策者非常感兴趣的因素。然而,由于缺乏精确的经济模型和外部因素(如天气变化或政治决策)的影响,经济分析和预测不是简单的任务。在本论文中,我们研究了不同类型的神经网络及其在各种分析任务中的适用性,包括GDP预测以及评估各国发展的主要趋势。分析了1980-2015年期间17个西班牙语国家以及法国和德国的历史宏观经济数据。这项工作随后比较了用于训练神经网络的各种算法的性能,并展示了各国经济状况的变化。此外,我们还提供了解释数据中发现的趋势的可能原因。原创 2022-12-21 16:17:11 · 795 阅读 · 0 评论 -
元认知神经网络与在线序贯学习(Matlab代码实现)
1]何儒汉,熊捷繁,熊明福.基于背景自适应学习的行人重识别算法研究[J/OL].计算机工程与应用:1-10[2022-12-20].http://kns.cnki.net/kcms/detail/11.2127.tp.20211202.1026.002.html。文章包含用于实现自适应识别和控制的在线顺序学习算法、元认知神经网络和前馈神经网络的代码。这些方法也用于解决分类和时间序列预测问题。原创 2022-12-20 11:02:43 · 523 阅读 · 0 评论 -
基于机器学习算法与历史数据预测未来的站点关闭(Matlab代码实现)
目录💥1 概述📚2 运行结果🎉3 参考文献👨💻4 Matlab代码应用背景:通过分析序列进行合理预测,做到提前掌握未来的发展趋势,为业务决策提供依据,这也是决策科学化的前提。时间序列分析:时间序列就是按时间顺序排列的一组数据序列。时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。时间序列分析有三个基本特点: 主函数部分代码:%% Initializationclear ; close all; clc%% ======================= Part 2: Pl原创 2022-12-20 10:19:23 · 513 阅读 · 0 评论 -
基于LMS算法的Mackey Glass时间序列预测(Matlab代码实现)
经典的时间序列预测方法在用于非线性系统预测时有一定的困难,而神经网络具有较好的非线性特性,为时间序列预测开辟了新的途径。而遗传算法具有较好的全局最优搜索能力,遗传神经网络将两者结合,既保留了遗传算法的全局寻优的特点,又兼有神经网络的非线性特性和收敛的快速性。Mackey-Glass(MG)混沌时间序列具有非线性特性,是时间序列预测问题中的基准问题之一,具有代表性。时滞混沌系统即具有混沌运动的时滞系统。时滞系统是系统中一处或几处的信号传递有时间延迟的系统。所谓混沌是指具有以下特点的一类现象:由确定性产生;原创 2022-12-19 20:11:49 · 1232 阅读 · 0 评论 -
采用多层人工神经网络的能源消耗的时间序列预测(Matlab代码实现)
1]程静,郑定成,吴继权.基于时间序列ARMA模型的广东省能源需求预测[J].能源工程,2010(01):1-5.DOI:10.16189/j.cnki.nygc.2010.01.012.该项目为能源消耗的时间序列预测,在Matlab中实现。该预测采用多层人工神经网络,基于Kaggle训练集预测未来能源消耗。原创 2022-12-19 19:49:58 · 888 阅读 · 0 评论 -
SCN时间序列预测模型详解(Matlab代码实现)
1]王鑫,吴际,刘超,杨海燕,杜艳丽,牛文生.基于LSTM循环神经网络的故障时间序列预测[J].北京航空航天大学学报,2018,44(04):772-784.DOI:10.13700/j.bh.1001-5965.2017.0285.中,有四种SCN,分别为:系统检查点SCN、数据文件检查点SCN、启动SCN、终止SCN。SCN(System Change Number 简称 SCN)是当。更新后,由DBMS自动维护去累积递增的一个数字。原创 2022-12-19 19:13:54 · 769 阅读 · 0 评论 -
利用深度学习生成数据的时间序列预测(Matlab代码实现)
然而,现有研究在时间序列预测方面存在诸多局限性,没有考虑到复杂且规模庞大数据的计算消耗,忽视了非平稳数据的时间协变量漂移问题,缺乏一个实时、精准且泛化性能强的预测模型。给定数据集包括辐照数据集和发电数据集,其基本上分别包含由传感器检测到的辐照度值和以(kw/h)为单位的发电值。该项目的主要目标是找出最适合预测未来两天发电数据的ANN架构,从任何给定的一天开始,间隔为15、30、45、60分钟。这些数据集包含从2018年12月到2019年11月的所有12个月的数据,每15分钟记录一次数据。原创 2022-12-18 14:00:21 · 2353 阅读 · 0 评论