Pandas—Series对象:常用属性、方法、布尔类型、运算快速理解

本文详细介绍了如何在Python的Pandas库中创建Series对象,以及其常用的属性如.loc,.iloc,.dtype等,涵盖了数据读取、排序、转换和统计功能的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pandas-Series对象详细总结
格式 含义 举例                      结果
创建 包名.Series() 创建Series对象 (1)传入列表
s1=pd.Series([1,2,3])
(2)传入元组
s1=pd.Series((1,2,3))
(3)传入字典
s1=pd.Series({'a':1,'b':2,'c':3))
传入列表和元组的时候里面可以指定索引列格式为index=['a','b','c']
(1)和(2)的 结果为:
     0    1
     1    2
     2    3
(3)结果为:a    1
             b    2
             c    3
Series
常用
属性
对象.loc 根据(索引列)行索引值取一行数据
但是以列的形式表示出来。
第一列为原来的列名,第二列为对应的一行数据,并会打印行索引值以及行索引值的类型
可以读取一个csv的文件,这里举例我这里的文件,
 文件为:
    nid name  age 
A    1   温蒂   15
B    2   纳兹   19
C    3   露西   19
D    4   格雷   19
读取操作为:import pandas as pd
 读取csv文件的数据,并设置id列为: 索引
data_df =pd.read_csv('/export/data/friends.csv', index_col='id')
print(data_df.loc[A])
结果为:
nid      1
name    温蒂
age     15
Name: A, dtype: object
对象.iloc 根据行号取一行数据,
也是会用列的形式打印出来,结果同loc属性打印的结果一样
承上例data_df的文件数据
print(data_df.iloc[0]),行号就相当于每行数据的索引值,第一行数据的索引值为0
结果为:
nid      1
name    温蒂
age     15
Name: A, dtype: object
对象.dtype或dtypes 查看Series对象的元素类型,
这两个都可以使用
我这里就使用data_df.iloc[0]这个数据来看它的数据类型
格式为:print(data_df.iloc[0].dtype)
结果为:object
 表示: 字符串的意思
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值