Pandas-Series对象详细总结 | ||||
格式 | 含义 | 举例 | 结果 | |
创建 | 包名.Series() | 创建Series对象 | (1)传入列表 s1=pd.Series([1,2,3]) (2)传入元组 s1=pd.Series((1,2,3)) (3)传入字典 s1=pd.Series({'a':1,'b':2,'c':3)) 传入列表和元组的时候里面可以指定索引列格式为index=['a','b','c'] |
(1)和(2)的 结果为: 0 1 1 2 2 3 (3)结果为:a 1 b 2 c 3 |
Series 常用 属性 |
对象.loc | 根据(索引列)行索引值取一行数据 但是以列的形式表示出来。 第一列为原来的列名,第二列为对应的一行数据,并会打印行索引值以及行索引值的类型 |
可以读取一个csv的文件,这里举例我这里的文件, 文件为: nid name age A 1 温蒂 15 B 2 纳兹 19 C 3 露西 19 D 4 格雷 19 读取操作为:import pandas as pd 读取csv文件的数据,并设置id列为: 索引 data_df =pd.read_csv('/export/data/friends.csv', index_col='id') print(data_df.loc[A]) |
结果为: nid 1 name 温蒂 age 15 Name: A, dtype: object |
对象.iloc | 根据行号取一行数据, 也是会用列的形式打印出来,结果同loc属性打印的结果一样 |
承上例data_df的文件数据 print(data_df.iloc[0]),行号就相当于每行数据的索引值,第一行数据的索引值为0 |
结果为: nid 1 name 温蒂 age 15 Name: A, dtype: object |
|
对象.dtype或dtypes | 查看Series对象的元素类型, 这两个都可以使用 |
我这里就使用data_df.iloc[0]这个数据来看它的数据类型 格式为:print(data_df.iloc[0].dtype) |
结果为:object 表示: 字符串的意思 |
|