关于机器人状态估计(12)-VIO/VSLAM的稀疏与稠密

VIO三相性与世界观室内ALL IN ONE 首先以此链接先对近期工作的视频做个正经的引流,完成得这么好的效果,仅仅是因为知乎限流1分钟以内的视频,导致整个浏览量不到300,让人非常不爽。

这套系统已经完成了,很快将正式发布,室外180米实测平移偏差也控制在了0.6%左右,最后1米上下徘徊,旋转无偏。标题其实和今天的文章关系不大,主要是梳理下稠密和稀疏的重点落地与应用。

先列一下最近的一些工作背景上的思考:

在接下来的 10 年,机器人融合融态感知即将迎来剧烈的变化,尤其是以视觉为主的融合融态感知,随着成本的降低与性能的提升,将广泛应用于导航面与操作面,为社会带来深远的变化。想象一台能为老年人完成 30+种养老服务任务并进行交流互动的 robots,在 5-10 年这个阶段不再是科幻。接下来 1-5 年内单任务/少任务/集群式机器人也将在我们的工业面和社会面广泛的被使用,不仅仅是特斯拉,DJI等。

但是我国在机器人领域其实与北美差距仍然很大,看似供应链强大,但大量机器人仍然 停留在中低端领域,先不提具体操作和任务面(离全面通过机器人内感知系统完成仍然有很大的距离),就以最基本的导航和定位面(SLAM)仍然高度依赖线扫雷达与固态雷达。以 SKYDIO 为例,DJI 作为龙头多年早已构筑了核心优势市场,但是 SKYDIO 仍然通过与 Nividia 与 CUDA 生态的深绑定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值