书生浦语大模型实战营初夏专场开营了,具体的课程在以下链接
https://github.com/InternLM/Tutorial
本视频主要介绍了 书生·浦语大模型 相关的全链路产品体系。讲述老师为 上海人工智能实验室的青年科学家 陈恺。
大模型已经成为了发展人工智能的重要途经:
以往的人工智能的研究,都是针对特定任务,一个模型解决一个问题;而对于大模型而言,它是通过一个模型应对多个任务、多种模态。
上海人工智能实验室也开发了一整套开源产品体系:
InternLM2的两个规格:
下面是InternLM2相对与Intern性能对比:
InternLM2的性能特点有:
有了大模型,我们可以形成的应用是:
对于我们想要做成的应用,需要怎么做:
第一步:进行模型的选型。关注不同维度的能力,特别是专业上的能力。选择一个意向的模型。
第二步:评估自己的业务场景是否足够复杂。如果不是足够复杂,可以直接使用该模型,加上Prompt工程,就可以实现相关的业务;
如果业务场景足够复杂,一般需要进行模型微调。这个时候就要看算力是否足够。如果算力足够,可能就需要进行模型的续训,或者全参数的微调,当然,这个花的钱就比较多。如果算力不足,那么就只能考虑部分参数的微调,比如Lora微调。
在完成微调之后,这个模型能直接用于业务吗?这里要考察业务本身是否需要跟环境进行交互,如果这个业务是需要与环境进行交互的,比如需要调用外部API,或者与已有的数据库进行交互,那么就需要构建一个智能体(Agent),完成相关业务。
接着就需要对调好的模型进行评测。评测完之后进行模型的部署。
针对上图的全过程,书生.浦语也有一套全链路的开源体系,覆盖到上面通过模型搭建应用的全过程:
1.数据:开源了书生.万卷
2.预训练:开源了InternLM-train预训练框架
3.微调:开源了XTuner微调框架
4.部署:开源了LMDeploy框架
5.评测:开源了OpenCompass全方面评测工具
6.应用:开源了Lagent和AgentLego两个项目,Lagent是智能体搭建框架,AgentLego提供了供大模型调用的丰富的工具箱。
1.数据:书生.万卷
除了2023年开源的书生.万卷自己有多种数据集之外,还提供了OpenDataLab平台支持更多的开放数据集供大家下载
2.预训练:InternLM-train
预训练提供了完整的框架
3.微调:XTuner
XTuner可以适合不同的生态,支持不同的算法,支持不同的开原生态、不同的加速方式和Nvidia的各级显卡。
XTuner对显存的优化,可以实现仅需8G显存微调7B模型。
4.评测:OpenCompass
下面是OpenCompass2.0司南大模型评测体系开源历程:
在OpenCompass的能力评测下,如何通过它来促进模型的发展?
OpenCompass年度榜单(综合性客观评测)
5.部署:LMDeploy
针对LLM的特点,LMDeploy对部署进行了优化。
对于LLM的挑战,LMDeploy提供了全流程解决方案:对外提供接口,内部包含轻量化、推理引擎和服务等模块。
LMDeploy对于vLLM的对比:
6.应用:
LLM本身存在局限性,所以需要让LLM驱动智能体(Agent),需要搭建一个包括不同模块的智能体框架,以LLM为核心,进行规划、推理和执行。
Lagent框架可以支持不同智能体的能力,支持不同的LLM的API,并提供了很多的工具:
Agent可以完成以下代码数学题:
AgentLego聚焦在给LLM提供工具集合,其中积累了很多OpenMMLab工具集: