基于YOLOv7的深度学习车牌识别系统/PYQT/YOLO/PYTHON

基于YOLOv7的深度学习车牌识别系统开发文档

1. 项目概述

本项目是一个基于深度学习的车牌识别系统,采用YOLOv7和LPRNet两个深度学习模型分别实现车牌检测与车牌字符识别。系统支持图像、视频和摄像头三种输入方式进行实时车牌检测和识别,并提供了友好的图形用户界面。

1.1 主要功能

  • 车牌检测:使用YOLOv7模型进行车牌区域定位
  • 车牌颜色识别:识别蓝色和绿色车牌
  • 车牌字符识别:使用LPRNet模型识别车牌字符
  • 多种输入支持:支持图像文件、视频文件和摄像头实时输入
  • 图形用户界面:提供直观的操作界面

2. 项目架构设计

2.1 目录结构

├── UI/                  # 用户界面相关文件
│   ├── icon/            # 界面图标资源
│   ├── 启动程序1.py      # 主程序入口
│   ├── LPR.py           # UI界面逻辑
│   └── LPR.ui           # UI界面设计文件
├── lprnet/              # 车牌字符识别模型
│   ├── model.py         # LPRNet模型定义
│   ├── dataload.py      # 数据加载模块
│   └── train.py         # 模型训练代码
├── yolov7/              # 车牌检测模型
│   ├── models/          # 模型定义
│   ├── utils/           # 工具函数
│   ├── cfg/             # 配置文件
│   ├── detect.py        # 基础检测代码
│   └── yolov7_detect.py # 车牌检测实现
├── tools/               # 工具函数模块
│   ├── yolov7_predict.py # YOLOv7预测模块
│   ├── lpr_predict.py    # LPRNet预测模块
│   ├── operate.py        # 操作函数
│   └── Perspective.py    # 透视变换模块
├── weights/             # 预训练模型权重
└── output/              # 输出结果目录

2.2 系统架构

本系统采用模块化设计,主要分为以下几个核心模块:

  1. 用户界面模块:基于PyQt5实现,提供用户交互界面
  2. 车牌检测模块:基于YOLOv7实现,负责车辆图像中的车牌定位
  3. 车牌字符识别模块:基于LPRNet实现,负责对检测出的车牌区域进行字符识别
  4. 工具模块:包含图像处理、模型预测等辅助功能

系统工作流程:输入图像/视频 → 车牌检测 → 车牌区域截取 → 车牌颜色识别 → 车牌字符识别 → 结果显示

3. 模块功能说明

3.1 用户界面模块(UI目录)

用户界面基于PyQt5实现,提供以下功能:

  • 图像/视频文件选择
  • 摄像头连接与控制
  • 检测结果展示
  • 识别算法选择

核心文件:

  • 启动程序1.py:系统入口,包含主要逻辑
  • LPR.py:UI界面逻辑实现
  • LPR.ui:Qt Designer设计的界面文件

3.2 车牌检测模块(yolov7目录)

基于YOLOv7深度学习模型实现车牌区域检测:

  • 支持蓝牌和绿牌两种类型车牌检测
  • 使用预训练权重快速准确检测车牌位置

核心文件:

  • yolov7_detect.py:车牌检测实现
  • models/:YOLOv7模型定义
  • utils/:辅助函数和工具

3.3 车牌字符识别模块(lprnet目录)

基于LPRNet深度学习模型实现车牌字符识别:

  • 支持中国车牌格式识别
  • 包含省份简称、字母和数字识别

核心文件:

  • model.py:LPRNet网络结构定义
  • train.py:模型训练代码
  • dataload.py:数据加载模块

3.4 工具模块(tools目录)

包含各种辅助功能:

  • 图像处理和透视变换
  • 模型预测封装
  • 车牌颜色识别

核心文件:

  • yolov7_predict.py:YOLOv7预测封装
  • lpr_predict.py:LPRNet预测封装
  • Perspective.py:透视变换处理
  • operate.py:操作函数集合

4. 关键算法说明

4.1 车牌检测算法

车牌检测基于YOLOv7实现,主要步骤:

  1. 图像预处理:缩放、归一化
  2. 目标检测:使用YOLOv7识别车牌区域
  3. 非极大值抑制:过滤重叠检测框
  4. 后处理:提取车牌区域图像

4.2 车牌矫正算法

检测到车牌后,使用以下步骤进行矫正:

  1. 倾斜检测:使用特征值和特征向量计算倾斜角度
  2. 透视变换:根据检测到的四个角点进行透视变换
  3. 精细矫正:使用fastDeskew函数进行最终精细矫正

4.3 车牌字符识别算法

字符识别基于LPRNet实现,主要步骤:

  1. 图像预处理:缩放为94×24大小,归一化
  2. 特征提取:使用CNN提取车牌图像特征
  3. 序列预测:识别车牌字符序列
  4. 后处理:去除重复字符,转换为最终车牌号

5. 安装部署指南

5.1 环境要求

  • Python 3.6+
  • PyTorch 1.7+
  • OpenCV 4.5+
  • PyQt5 5.15+
  • CUDA 11.0+ (GPU加速,可选)

5.2 安装步骤

Mac版本
  1. 安装Python依赖:
pip install torch torchvision opencv-python PyQt5 qtmodern numpy scipy
  1. 下载预训练模型权重,放入weights目录:

    • YOLOv7模型权重:yolov7_30_2class.pt
    • LPRNet模型权重:LPRNET.pth
  2. 启动程序:

cd UI
python 启动程序1.py
Windows版本
  1. 安装Python依赖:
pip install torch torchvision opencv-python PyQt5 qtmodern numpy scipy
  1. 下载预训练模型权重,放入weights目录:

    • YOLOv7模型权重:yolov7_30_2class.pt
    • LPRNet模型权重:LPRNET.pth
  2. 启动程序:

cd UI
python 启动程序1.py

5.3 GPU加速配置

本系统支持GPU加速,配置方法:

  • Mac系统:
    系统会自动检测并使用MPS(Metal Performance Shaders)进行加速

  • Windows系统:
    系统会自动检测并使用CUDA进行加速,确保已正确安装CUDA和cuDNN

6. 使用说明

6.1 图像识别

  1. 点击"选择图片"按钮,选择需要识别的车辆图像
  2. 点击"识别"按钮进行车牌识别
  3. 系统会显示检测到的车牌图像、车牌颜色类型和识别出的车牌号码

6.2 视频识别

  1. 点击"打开视频"按钮,选择需要识别的视频文件
  2. 系统会自动开始识别视频中的车牌
  3. 点击"暂停/继续"按钮可以控制视频播放
  4. 点击"关闭视频"按钮停止识别

6.3 摄像头识别

  1. 点击"打开摄像头"按钮,系统会启动计算机摄像头
  2. 系统会实时识别摄像头画面中的车牌
  3. 点击"关闭摄像头"按钮停止识别

6.4 算法选择

系统支持选择不同的车牌检测和识别算法:

  • 检测算法下拉框:选择车牌检测使用的算法
  • 识别算法下拉框:选择车牌字符识别使用的算法

7. 开发者指南

7.1 模型训练

YOLOv7训练
cd yolov7
python train.py --data data/coco.yaml --cfg cfg/training/yolov7.yaml --weights '' --batch-size 16 --epochs 300
LPRNet训练
cd lprnet
python train.py --epochs 100 --batch_size 128 --lr 0.001

7.2 自定义开发

  • 添加新的车牌类型:修改yolov7/data中的标签配置
  • 调整识别精度:修改tools/yolov7_predict.py中的阈值参数
  • 界面定制:修改UI/LPR.ui或直接修改UI/LPR.py

8. 常见问题

  1. 无法加载模型

    • 检查模型权重文件是否正确放置在weights目录
    • 确认PyTorch版本与模型兼容
  2. 识别准确率低

    • 检查图像质量和光线条件
    • 调整YOLOv7的检测阈值
    • 尝试使用高精度模式
  3. 程序运行缓慢

    • 启用GPU加速
    • 降低视频分辨率
    • 关闭不必要的应用程序
  4. 界面无响应

    • 检查系统资源占用
    • 重启应用程序
    • 更新图形驱动

B站/鱼:万能程序员
在这里插入图片描述
在这里插入图片描述
![请添加图片描述](https://i-blog.csdnimg.cn/direct/714476b8caba469691af5cbfdeaf7a24.png
请添加图片描述
在这里插入图片描述

B站视频:https://www.bilibili.com/video/BV177ojYRE7d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万能程序员-传康Kk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值