基于YOLOv7的深度学习车牌识别系统开发文档
1. 项目概述
本项目是一个基于深度学习的车牌识别系统,采用YOLOv7和LPRNet两个深度学习模型分别实现车牌检测与车牌字符识别。系统支持图像、视频和摄像头三种输入方式进行实时车牌检测和识别,并提供了友好的图形用户界面。
1.1 主要功能
- 车牌检测:使用YOLOv7模型进行车牌区域定位
- 车牌颜色识别:识别蓝色和绿色车牌
- 车牌字符识别:使用LPRNet模型识别车牌字符
- 多种输入支持:支持图像文件、视频文件和摄像头实时输入
- 图形用户界面:提供直观的操作界面
2. 项目架构设计
2.1 目录结构
├── UI/ # 用户界面相关文件
│ ├── icon/ # 界面图标资源
│ ├── 启动程序1.py # 主程序入口
│ ├── LPR.py # UI界面逻辑
│ └── LPR.ui # UI界面设计文件
├── lprnet/ # 车牌字符识别模型
│ ├── model.py # LPRNet模型定义
│ ├── dataload.py # 数据加载模块
│ └── train.py # 模型训练代码
├── yolov7/ # 车牌检测模型
│ ├── models/ # 模型定义
│ ├── utils/ # 工具函数
│ ├── cfg/ # 配置文件
│ ├── detect.py # 基础检测代码
│ └── yolov7_detect.py # 车牌检测实现
├── tools/ # 工具函数模块
│ ├── yolov7_predict.py # YOLOv7预测模块
│ ├── lpr_predict.py # LPRNet预测模块
│ ├── operate.py # 操作函数
│ └── Perspective.py # 透视变换模块
├── weights/ # 预训练模型权重
└── output/ # 输出结果目录
2.2 系统架构
本系统采用模块化设计,主要分为以下几个核心模块:
- 用户界面模块:基于PyQt5实现,提供用户交互界面
- 车牌检测模块:基于YOLOv7实现,负责车辆图像中的车牌定位
- 车牌字符识别模块:基于LPRNet实现,负责对检测出的车牌区域进行字符识别
- 工具模块:包含图像处理、模型预测等辅助功能
系统工作流程:输入图像/视频 → 车牌检测 → 车牌区域截取 → 车牌颜色识别 → 车牌字符识别 → 结果显示
3. 模块功能说明
3.1 用户界面模块(UI目录)
用户界面基于PyQt5实现,提供以下功能:
- 图像/视频文件选择
- 摄像头连接与控制
- 检测结果展示
- 识别算法选择
核心文件:
启动程序1.py
:系统入口,包含主要逻辑LPR.py
:UI界面逻辑实现LPR.ui
:Qt Designer设计的界面文件
3.2 车牌检测模块(yolov7目录)
基于YOLOv7深度学习模型实现车牌区域检测:
- 支持蓝牌和绿牌两种类型车牌检测
- 使用预训练权重快速准确检测车牌位置
核心文件:
yolov7_detect.py
:车牌检测实现models/
:YOLOv7模型定义utils/
:辅助函数和工具
3.3 车牌字符识别模块(lprnet目录)
基于LPRNet深度学习模型实现车牌字符识别:
- 支持中国车牌格式识别
- 包含省份简称、字母和数字识别
核心文件:
model.py
:LPRNet网络结构定义train.py
:模型训练代码dataload.py
:数据加载模块
3.4 工具模块(tools目录)
包含各种辅助功能:
- 图像处理和透视变换
- 模型预测封装
- 车牌颜色识别
核心文件:
yolov7_predict.py
:YOLOv7预测封装lpr_predict.py
:LPRNet预测封装Perspective.py
:透视变换处理operate.py
:操作函数集合
4. 关键算法说明
4.1 车牌检测算法
车牌检测基于YOLOv7实现,主要步骤:
- 图像预处理:缩放、归一化
- 目标检测:使用YOLOv7识别车牌区域
- 非极大值抑制:过滤重叠检测框
- 后处理:提取车牌区域图像
4.2 车牌矫正算法
检测到车牌后,使用以下步骤进行矫正:
- 倾斜检测:使用特征值和特征向量计算倾斜角度
- 透视变换:根据检测到的四个角点进行透视变换
- 精细矫正:使用
fastDeskew
函数进行最终精细矫正
4.3 车牌字符识别算法
字符识别基于LPRNet实现,主要步骤:
- 图像预处理:缩放为94×24大小,归一化
- 特征提取:使用CNN提取车牌图像特征
- 序列预测:识别车牌字符序列
- 后处理:去除重复字符,转换为最终车牌号
5. 安装部署指南
5.1 环境要求
- Python 3.6+
- PyTorch 1.7+
- OpenCV 4.5+
- PyQt5 5.15+
- CUDA 11.0+ (GPU加速,可选)
5.2 安装步骤
Mac版本
- 安装Python依赖:
pip install torch torchvision opencv-python PyQt5 qtmodern numpy scipy
-
下载预训练模型权重,放入
weights
目录:- YOLOv7模型权重:
yolov7_30_2class.pt
- LPRNet模型权重:
LPRNET.pth
- YOLOv7模型权重:
-
启动程序:
cd UI
python 启动程序1.py
Windows版本
- 安装Python依赖:
pip install torch torchvision opencv-python PyQt5 qtmodern numpy scipy
-
下载预训练模型权重,放入
weights
目录:- YOLOv7模型权重:
yolov7_30_2class.pt
- LPRNet模型权重:
LPRNET.pth
- YOLOv7模型权重:
-
启动程序:
cd UI
python 启动程序1.py
5.3 GPU加速配置
本系统支持GPU加速,配置方法:
-
Mac系统:
系统会自动检测并使用MPS(Metal Performance Shaders)进行加速 -
Windows系统:
系统会自动检测并使用CUDA进行加速,确保已正确安装CUDA和cuDNN
6. 使用说明
6.1 图像识别
- 点击"选择图片"按钮,选择需要识别的车辆图像
- 点击"识别"按钮进行车牌识别
- 系统会显示检测到的车牌图像、车牌颜色类型和识别出的车牌号码
6.2 视频识别
- 点击"打开视频"按钮,选择需要识别的视频文件
- 系统会自动开始识别视频中的车牌
- 点击"暂停/继续"按钮可以控制视频播放
- 点击"关闭视频"按钮停止识别
6.3 摄像头识别
- 点击"打开摄像头"按钮,系统会启动计算机摄像头
- 系统会实时识别摄像头画面中的车牌
- 点击"关闭摄像头"按钮停止识别
6.4 算法选择
系统支持选择不同的车牌检测和识别算法:
- 检测算法下拉框:选择车牌检测使用的算法
- 识别算法下拉框:选择车牌字符识别使用的算法
7. 开发者指南
7.1 模型训练
YOLOv7训练
cd yolov7
python train.py --data data/coco.yaml --cfg cfg/training/yolov7.yaml --weights '' --batch-size 16 --epochs 300
LPRNet训练
cd lprnet
python train.py --epochs 100 --batch_size 128 --lr 0.001
7.2 自定义开发
- 添加新的车牌类型:修改
yolov7/data
中的标签配置 - 调整识别精度:修改
tools/yolov7_predict.py
中的阈值参数 - 界面定制:修改
UI/LPR.ui
或直接修改UI/LPR.py
8. 常见问题
-
无法加载模型:
- 检查模型权重文件是否正确放置在weights目录
- 确认PyTorch版本与模型兼容
-
识别准确率低:
- 检查图像质量和光线条件
- 调整YOLOv7的检测阈值
- 尝试使用高精度模式
-
程序运行缓慢:
- 启用GPU加速
- 降低视频分辨率
- 关闭不必要的应用程序
-
界面无响应:
- 检查系统资源占用
- 重启应用程序
- 更新图形驱动
B站/鱼:万能程序员
![请添加图片描述](https://i-blog.csdnimg.cn/direct/714476b8caba469691af5cbfdeaf7a24.png
B站视频:https://www.bilibili.com/video/BV177ojYRE7d