- 博客(52)
- 收藏
- 关注
原创 2️⃣ NumPy 核心用法
本文介绍了NumPy的核心功能,这是深度学习的必备基础工具。主要内容包括:数组创建方法(np.array、zeros等)、数组属性(shape、dtype等)、索引与切片操作、数组运算与广播机制、逻辑运算和布尔索引、数组变形与转置、常用统计函数以及随机数生成。这些功能为处理张量数据、实现矩阵运算和初始化参数提供了基础支持,是后续使用PyTorch或TensorFlow等深度学习框架的重要前提。
2025-08-06 18:26:04
680
原创 1️⃣ NumPy 入门指南:快速理解数组是什么
摘要: NumPy数组是数据分析的核心数据结构,与Python列表不同,它要求数据类型统一、排列规整,显著提升计算效率(快10-100倍)。数组支持多维结构(1D至nD),内置丰富数学运算,并能与主流数据工具无缝衔接。创建数组简单(如np.array()或np.zeros()),但需注意其结构一致性。核心优势包括高速计算、批量操作和广泛兼容性,是数据科学领域的“基础砖块”。初学者需掌握其统一性、多维性和高效性三大特点。
2025-08-06 18:02:32
881
原创 NumPy 数组创建(初始化)常用方法
本文介绍了NumPy中最常用的数组创建方法,包括:从Python列表转换(np.array())、创建全0/全1数组(np.zeros()/np.ones())、生成指定值数组(np.full())、构建等差数列(np.arange()/np.linspace())、生成随机数组(np.random系列)、创建单位矩阵/对角矩阵(np.eye()/np.diag())以及基于现有数组创建新数组(xxx_like()系列)。这些方法是NumPy数据处理的基础,适用于初始化参数、构建测试数据和矩阵运算等场景。文
2025-08-05 16:59:16
513
原创 2️⃣ NumPy 深度学习实战教程
本文介绍了NumPy在深度学习中的关键应用: 数据预处理:通过归一化和标准化处理数据; One-hot编码:将分类标签转换为向量形式; 矩阵运算:实现神经网络前向传播; 激活函数:如ReLU和Sigmoid的非线性转换; 损失计算:Softmax和交叉熵损失函数; 梯度下降:参数优化过程模拟; 维度操作:包括reshape、transpose等张量处理技巧。这些基础操作是深度学习实现的核心,帮助理解神经网络底层原理。
2025-08-05 16:09:13
1347
原创 文件操作实战
深度学习项目中的文件操作是核心技能,涵盖数据读取、模型保存、日志记录等关键环节。本文总结了深度学习场景下的文件处理技巧:1)基础文件读写(文本/二进制模式);2)高效路径管理(os模块跨平台处理);3)专用文件格式(JSON配置、CSV标注);4)实战避坑指南(路径检查、大文件处理)。掌握这些技能能显著提升深度学习工程效率,避免常见文件操作错误。
2025-08-02 16:37:20
965
原创 1️⃣5️⃣ 文件常用操作
本文系统介绍了Python中的文件操作方法,包括文件打开模式、读写操作、上下文管理以及目录管理。主要内容有:1)文件操作三步走:打开-操作-关闭,推荐使用with语句自动管理资源;2)文本文件读写方法,如read()、write()等;3)os模块的常用文件和目录操作;4)常见问题解决方案,如中文乱码处理和大文件处理技巧;5)通过文件复制工具案例展示实际应用。掌握这些核心要点能有效提升Python文件处理能力。
2025-08-02 16:26:48
707
原创 1️⃣4️⃣ OOP:类、封装、继承、多态
本文系统介绍了Python面向对象编程(OOP)的核心概念,主要包括:类作为抽象模板,实例是具体对象;封装通过私有属性和方法保护数据;继承实现代码复用,子类可扩展功能;多态允许统一接口调用不同行为
2025-07-31 18:06:02
902
原创 1️⃣3️⃣ 偏函数(Partial Function):简化函数调用
偏函数用于固定函数的部分参数值,生成新的简化函数。其核心作用是减少重复参数输入,使调用更简洁。既能简化代码,又不影响原函数功能,是一种实用的编程技巧。
2025-07-30 15:40:24
566
原创 1️⃣2️⃣ 装饰器(Decorator)
Python装饰器是一种在不修改原函数代码的情况下动态增强函数功能的技术。本文介绍了装饰器的核心概念和工作原理:装饰器本质是返回函数的高阶函数,通过@语法糖实现函数增强。文章详细讲解了基础装饰器、带参数装饰器的实现方式,强调了使用functools.wraps保留原函数元信息的重要性,并提供了计时装饰器的实践案例。装饰器适用于日志记录、权限验证、性能统计等场景,能够有效提升代码的灵活性和可维护性。
2025-07-30 10:40:45
1211
原创 1️⃣1️⃣ 匿名函数
在 Python 中,匿名函数(也称为 lambda 函数)是一种轻量级的函数定义方式,它允许你在不使用传统def关键字的情况下快速创建函数。
2025-07-28 17:34:58
398
原创 1️⃣0️⃣Python 闭包与函数返回函数的用法
本文深入讲解了 Python 中函数作为返回值的用法,并重点介绍了闭包(Closure)这一重要概念。通过延迟求和、变量引用、循环陷阱、nonlocal 关键字等实例,帮助你理解闭包是如何在函数内部“记住”外层作用域的变量,从而实现延迟执行和状态保持。同时附有实用练习,如实现一个计数器函数,巩固对闭包特性的掌握。
2025-07-28 17:16:16
385
原创 9️⃣高阶函数:map()、reduce()、filter()、sorted()
本文介绍了Python中四个常用的高阶函数:map()、reduce()、filter()和sorted()。map()用于元素级变换,reduce()用于累积规约,filter()用于过滤元素,sorted()用于自定义排序。文章通过具体示例展示了每个函数的用法,包括数字平方、序列求和、素数生成、字符串排序等常见操作。同时提供了练习题和延伸阅读推荐,帮助读者掌握这些高阶函数的应用场景和使用技巧。这些函数能以简洁的方式处理序列操作,提高代码的可读性和效率。
2025-07-27 16:30:19
413
原创 Python 开发环境
通常安装 Anaconda 后会自带 Jupyter Notebook,直接使用即可。Anaconda 是一个用于科学计算的 Python 发行版,适用于。,自带了包管理和环境管理工具。社区版免费,功能也足够使用。
2025-07-27 11:19:46
588
原创 8️⃣高级特性—— 迭代器(Iterator)
可迭代对象(Iterable)是可以被循环的对象。listtupledictsetstrgenerator包含yield的生成器函数迭代器(Iterator)是一个可以被next()调用并不断返回下一个值的对象,直到抛出异常为止。生成器(Generator)是天然的 Iterator。
2025-07-27 10:36:48
505
原创 8️⃣高级特性—— 生成器(Generator)
Python生成器是一种高效节能的内存管理工具,通过惰性求值按需生成数据,避免一次性占用过多内存。创建生成器有两种方式:将列表生成式的[]改为(),或使用yield定义生成器函数。生成器通过next()获取值或for循环迭代,yield机制使函数执行时能暂停和恢复。还能捕获StopIteration获取返回值,适合处理大数据流或无限序列(如杨辉三角)。生成器结合了函数暂停、惰性生成和高效节能三大特性,是优化Python内存使用的利器。
2025-07-27 10:22:02
162
原创 8️⃣ 高级特性—— 迭代(Iteration)
Python迭代机制通过for...in结构简化数据遍历,支持列表、字符串、字典等多种可迭代对象。字典默认迭代键,也可用values()和items()遍历值和键值对。使用enumerate获取索引和值,支持多变量解包。通过collections.abc的Iterable判断对象可迭代性。示例展示了查找列表最小最大值的方法,体现了Python迭代的高效与简洁。
2025-07-26 10:44:48
275
原创 8️⃣ 高级特性——切片(Slice)
Python切片是处理序列数据的强大工具,语法为sequence[start:stop:step],支持截取子集、倒序访问和间隔取样等操作。它能简化大量循环代码,适用于list、tuple和str等序列类型。
2025-07-26 10:08:57
668
原创 5️⃣ set(集合)速查表
Python 中的集合(set)是一组无序且不重复的元素集合。它类似于字典(dict)的键集合,但不存储对应的值。集合提供了高效的成员检测和数学集合操作,如交集、并集、差集。set是无序且无重复元素的集合,支持高效的数学集合操作。集合中的元素必须是不可变对象。选择合适的不可变类型作为字典的键或集合的元素,能确保程序稳定、高效运行。
2025-07-23 23:40:17
287
原创 4️⃣字典(dict)速查表
Python 内置了强大的字典(dict)数据结构,也称为映射(map),它以“键-值”(key-value)对的形式存储数据,拥有极快的查找速度。它广泛应用于需要快速访问和存储数据的场景。
2025-07-23 23:34:30
402
原创 2️⃣tuple(元组)速查表
Python中的tuple(元组)是一种有序且不可变的数据结构,与list类似但元素不可修改。其"不可变"是指元素指向的对象不变,但若元素本身是可变对象(如list),其内容仍可修改。tuple使用小括号创建,单元素需加逗号避免歧义。相比list,tuple不支持增删操作,但更安全高效,适合存储固定数据或作为字典key。核心特点包括:元素访问支持索引、嵌套可变对象不影响不可变性、单元素需特殊语法。推荐在数据只读时优先使用tuple而非list。
2025-07-22 18:01:22
150
原创 字符编码核心区别与联系说明
计算机字符编码经历了从ASCII到区域性编码、再到Unicode和UTF-8的演进过程,核心目标在于解决字符兼容性和存储效率问题。ASCII(1字节)仅支持英文,区域性编码(如GB2312)扩展了非英文字符支持但易乱码,Unicode(2-4字节)统一了所有语言编码,而UTF-8(1-6字节可变长)则优化了存储效率。现代编码体系以Unicode为字符集标准、UTF-8为存储/传输方案,实现了多语言兼容与效率的平衡,成为Web和操作系统的通用编码基础。
2025-07-14 18:41:47
316
原创 编译器 VS 解释器
编译器与解释器核心区别在于执行方式:编译器一次性转换源代码为机器码(如C++),执行效率高;解释器逐行翻译执行(如Python),开发效率高。典型编译型语言包括C、Java(混合模式),解释型语言有Python、JavaScript。两者目的相同且互补,现代语言常结合两者优势(如Java先编译为字节码再解释执行)。Python通过生成.pyc字节码实现混合模式,兼具编译与解释特性。
2025-07-14 17:08:12
414
原创 9. 回文数
回正序(从左向右)和倒序(从右向左)读都是一样的整数例如:✅ 121、0 是回文数❌ -121 不是回文数(因为包含负号,左右读不一致)虽然回文数问题看起来简单,但通过多种思路对比,不仅能练习基础语法,还能提升我们对算法效率、边界条件处理和思维方式的理解。
2025-07-14 15:31:38
206
原创 PyTorch模型设计入门:从零编写一个完整的__init__函数
函数是构建神经网络的第一步。本文将通过一个的简单模型示例,介绍。作为初学者,理解如何正确编写PyTorch模型的。的核心要素,并解释每一行代码的作用。
2025-04-14 03:28:13
395
原创 PyTorch入门:理解线性层(Linear)和激活层(ReLU)
作为深度学习初学者,理解神经网络中的 线性层(Linear) 和 激活层(ReLU)是构建模型的基础。本文将通过PyTorch代码示例,用通俗易懂的方式解释它们的原理、计算过程和应用场景。线性层(又称全连接层,Dense Layer)是神经网络中最基础的组件之一,用于对输入数据进行线性变换。激活层引入非线性,使神经网络能够学习复杂模式。
2025-04-14 03:07:57
1490
原创 学习率(Learning Rate)
之一,它控制模型在每次参数更新时的“步长大小”。简单来说:它决定了模型从错误中学习的“速度”。(实际训练中可通过TensorBoard/WandB等工具观察曲线)学习率(Learning Rate)是深度学习中最关键的。假设我们用线性回归模型。
2025-04-13 23:38:17
451
原创 深度学习参数设置指南
类型 | 定义 | 例子 ||------------|------------------------------------------|-------------------------------------|## 标题。
2025-04-13 16:42:25
1001
原创 PyTorch嵌入层(nn.Embedding)
这个核心属性外,还有其他属性和方法。掌握这些属性和方法后,你可以更灵活地操作嵌入层!在 PyTorch 中,
2025-04-03 18:30:16
987
原创 L2范数(L2 Norm)
通过这个类,你可以灵活地控制嵌入向量的规模,从而提升模型的泛化能力!对于一个向量 x = [x₁, x₂, ..., xn](或L2范数的平方和),作为正则化损失。“嵌入向量不要太大,否则我会惩罚你!想象你有一个向量(比如嵌入向量。),L2范数就是计算这个向量的。这个类计算所有输入嵌入矩阵的。就像在三维空间中,计算点。
2025-04-02 17:00:29
1617
原创 解决 Hugging Face SentenceTransformer 下载失败的完整指南:ProxyError、SSLError与手动下载方案
MaxRetryError: HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /api/models/sentence-transformers/all-MiniLM-L6-v2 (Caused by ProxyError('Unable to connect to proxy', SSLError(SSLError(1, '[SSL: KRB5_S_TKT_NYV] unexpecte
2025-04-01 18:30:12
1443
原创 神经网络权重初始化:正态分布 vs. Xavier初始化
Xavier 初始化是一种专门针对。是标准差(可以调整,例如。的神经网络的初始化方法。,避免梯度消失或爆炸。是上一层的神经元数量。是下一层的神经元数量。
2025-03-30 20:24:35
1095
网络技术挑战赛–选拔赛,分组抽签是进行到哪个阶段了呀,有哪个参加过的朋友知道的不
2024-06-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人