2025——》from pandas import Series/如何使用pandas中的Series进行数据操作?

在 Python 中,from pandas import Series 是直接导入 pandas 库中 Series 类 的语句,用于创建一维带标签的数据结构。以下是详细解析和使用指南:

一、导入语句解析

1. 基础语法

python

from pandas import Series
 

from pandas import Series

  • 作用:直接导入Series类,无需通过pd别名调用(如Series()代替pd.Series())。
  • 适用场景
    • 仅需使用Series而无需其他 pandas 功能。
    • 代码中频繁创建Series对象,简化调用。

二、创建 Series 对象

1. 从列表创建

python

s = Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
print(s)
 

s = Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
print(s)

输出:

plaintext

a    10
b    20
c    30
d    40
dtype: int64
 

a    10
b    20
c    30
d    40
dtype: int64
2. 从字典创建

python

data = {'北京': 100, '上海': 200, '广州': 300}
s = Series(data)
print(s)
 

data = {'北京': 100, '上海': 200, '广州': 300}
s = Series(data)
print(s)

输出:

plaintext

北京    100
上海    200
广州    300
dtype: int64
 

北京    100
上海    200
广州    300
dtype: int64
3. 从 NumPy 数组创建

python

import numpy as np
arr = np.array([1.1, 2.2, 3.3])
s = Series(arr, index=['x', 'y', 'z'])
print(s)
 

import numpy as np
arr = np.array([1.1, 2.2, 3.3])
s = Series(arr, index=['x', 'y', 'z'])
print(s)

输出:

plaintext

x    1.1
y    2.2
z    3.3
dtype: float64
 

x    1.1
y    2.2
z    3.3
dtype: float64

三、核心属性与方法

1. 基础属性

python

print(s.index)    # 索引:Index(['x', 'y', 'z'], dtype='object')
print(s.values)   # 值数组:array([1.1, 2.2, 3.3])
print(s.dtype)    # 数据类型:float64
print(s.shape)    # 形状:(3,)
 

print(s.index)    # 索引:Index(['x', 'y', 'z'], dtype='object')
print(s.values)   # 值数组:array([1.1, 2.2, 3.3])
print(s.dtype)    # 数据类型:float64
print(s.shape)    # 形状:(3,)
2. 索引与切片

python

# 按标签索引
print(s['y'])     # 2.2

# 按位置索引
print(s.iloc[1])  # 2.2

# 切片(包含结束标签)
print(s['x':'z'])
 

# 按标签索引
print(s['y'])     # 2.2

# 按位置索引
print(s.iloc[1])  # 2.2

# 切片(包含结束标签)
print(s['x':'z'])
3. 数据操作

python

# 修改值
s['x'] = 100

# 替换值
s.replace(200, 2000, inplace=True)

# 排序
s_sorted = s.sort_values()
 

# 修改值
s['x'] = 100

# 替换值
s.replace(200, 2000, inplace=True)

# 排序
s_sorted = s.sort_values()

四、与 pd.Series 的对比

方式 优点 缺点
from pandas import Se
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值