在 Python 中,from pandas import Series
是直接导入 pandas 库中 Series 类 的语句,用于创建一维带标签的数据结构。以下是详细解析和使用指南:
一、导入语句解析
1. 基础语法
python
from pandas import Series
from pandas import Series
- 作用:直接导入
Series
类,无需通过pd
别名调用(如Series()
代替pd.Series()
)。 - 适用场景:
- 仅需使用
Series
而无需其他 pandas 功能。 - 代码中频繁创建
Series
对象,简化调用。
- 仅需使用
二、创建 Series 对象
1. 从列表创建
python
s = Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
print(s)
s = Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
print(s)
输出:
plaintext
a 10
b 20
c 30
d 40
dtype: int64
a 10
b 20
c 30
d 40
dtype: int64
2. 从字典创建
python
data = {'北京': 100, '上海': 200, '广州': 300}
s = Series(data)
print(s)
data = {'北京': 100, '上海': 200, '广州': 300}
s = Series(data)
print(s)
输出:
plaintext
北京 100
上海 200
广州 300
dtype: int64
北京 100
上海 200
广州 300
dtype: int64
3. 从 NumPy 数组创建
python
import numpy as np
arr = np.array([1.1, 2.2, 3.3])
s = Series(arr, index=['x', 'y', 'z'])
print(s)
import numpy as np
arr = np.array([1.1, 2.2, 3.3])
s = Series(arr, index=['x', 'y', 'z'])
print(s)
输出:
plaintext
x 1.1
y 2.2
z 3.3
dtype: float64
x 1.1
y 2.2
z 3.3
dtype: float64
三、核心属性与方法
1. 基础属性
python
print(s.index) # 索引:Index(['x', 'y', 'z'], dtype='object')
print(s.values) # 值数组:array([1.1, 2.2, 3.3])
print(s.dtype) # 数据类型:float64
print(s.shape) # 形状:(3,)
print(s.index) # 索引:Index(['x', 'y', 'z'], dtype='object')
print(s.values) # 值数组:array([1.1, 2.2, 3.3])
print(s.dtype) # 数据类型:float64
print(s.shape) # 形状:(3,)
2. 索引与切片
python
# 按标签索引
print(s['y']) # 2.2
# 按位置索引
print(s.iloc[1]) # 2.2
# 切片(包含结束标签)
print(s['x':'z'])
# 按标签索引
print(s['y']) # 2.2
# 按位置索引
print(s.iloc[1]) # 2.2
# 切片(包含结束标签)
print(s['x':'z'])
3. 数据操作
python
# 修改值
s['x'] = 100
# 替换值
s.replace(200, 2000, inplace=True)
# 排序
s_sorted = s.sort_values()
# 修改值
s['x'] = 100
# 替换值
s.replace(200, 2000, inplace=True)
# 排序
s_sorted = s.sort_values()
四、与 pd.Series 的对比
方式 | 优点 | 缺点 |
---|---|---|
from pandas import Se |