一.搭建实验环境
1.下载Anoconda管理相关环境,将pytorch环境搭建在Anoconda上,经过多次实验,由于python用的3.6版本,最终较为兼容的版本是torch1.4.0和torchvision0.5.0
2.安装PyCharm,配置好运行环境
3.Pytorch环境中其他库的安装, scipy==1.2.1
numpy==1.17.0
matplotlib==3.1.2
opencv_python==4.1.2.30
torch==1.2.0
torchvision==0.4.0
tqdm==4.60.0
Pillow==8.2.0
h5py==2.10.0
二. 准备数据集
首先,需要准备一个标注好的数据集。这通常包括图像文件和相应的标注文件,标注文件中记录了图像中目标物体的位置(边界框)和类别。
- 图像文件:可以是常见的图