用 YOLO V4训练自己的数据集

一.搭建实验环境

1.下载Anoconda管理相关环境,将pytorch环境搭建在Anoconda上,经过多次实验,由于python用的3.6版本,最终较为兼容的版本是torch1.4.0和torchvision0.5.0

2.安装PyCharm,配置好运行环境

3.Pytorch环境中其他库的安装, scipy==1.2.1
numpy==1.17.0
matplotlib==3.1.2
opencv_python==4.1.2.30
torch==1.2.0
torchvision==0.4.0
tqdm==4.60.0
Pillow==8.2.0
h5py==2.10.0

. 准备数据集

首先,需要准备一个标注好的数据集。这通常包括图像文件和相应的标注文件,标注文件中记录了图像中目标物体的位置(边界框)和类别。

  • 图像文件:可以是常见的图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值