在 WSL2 中配置 CUDA 环境变量的两种方法(含多版本支持)

通过编辑 ~/.bashrc 文件添加 export 语句来配置 CUDA 环境变量,然后用 source ~/.bashrc 刷新环境。


一:更完整的环境变量设置

export PATH=/home/yyf/.local/bin:$PATH
export CUDA_HOME=/usr/local/cuda-12.6
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
✅ 说明:
  1. export PATH=/home/yyf/.local/bin:$PATH
    ➤ 把本地用户安装的包路径加入 PATH,常见于使用 pip install --user 安装包时。

  2. export CUDA_HOME=/usr/local/cuda-12.6
    ➤ 明确设置 CUDA 的安装根目录,方便后续引用。

  3. export PATH=$CUDA_HOME/bin:$PATH
    ➤ 把 CUDA 的可执行文件目录加入 PATH。

  4. export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
    ➤ 把 CUDA 的动态链接库路径加入库加载路径。

✅ 适用场景:
  • 需要使用 CUDA 编译器(如 nvcc)或运行 CUDA 相关程序。

  • 使用多个 CUDA 版本时可以通过修改 CUDA_HOME 来方便切换。

  • 需要使用本地 pip 安装的 Python 包。

  • 更适合对环境要求明确、希望灵活配置的开发者。


二:更简洁的 CUDA 环境配置

export PATH=$PATH:/usr/local/cuda-11.7/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.7/lib64
✅ 说明:
  • 没有使用 CUDA_HOME 变量,直接把路径写死。

  • 没有配置用户本地 .local/bin 目录。

  • 简洁明了,直接添加 CUDA 可执行文件和库路径。

✅ 适用场景:
  • 系统只有一个固定的 CUDA 版本。

  • 用户不需要频繁切换 CUDA 版本。

  • 不需要配置其他环境路径,只是为了让 CUDA 正常工作。


🔍 总结对比表

项目第一种方式第二种方式
是否设置 CUDA_HOME✅ 是(更灵活)❌ 否(不便切换版本)
是否添加本地 .local/bin✅ 是(支持本地 pip 包)❌ 否(更简洁)
是否更灵活/可复用✅ 是(适合开发者)⚠️ 一般(适合一次性配置)
配置复杂度稍高(4 条语句)简单(2 条语句)
适合什么人群需要多个 CUDA、pip、编译的用户只用固定 CUDA 的初学者

✅ 建议

  • 如果你是开发者、研究人员,可能用到多个 CUDA 版本,建议使用 第一种方式,更方便管理。

  • 如果你是入门用户,只想让 TensorFlow/PyTorch 正常用 CUDA 加速,可以用 第二种方式,够用了。


参考一:WSL2配置tensorflow GPU环境_wsl2安装tensorflow-CSDN博客

参考二:Ubuntu22.04安装CUDA、cudnn详细步骤_ubuntu怎么启用 dnn 模块-CSDN博客

### 升级CUDA方法和步骤 在Linux系统中升级CUDA通常涉及以下几个方面:卸载旧版本、安装新版本以及配置环境变量。以下是具体的说明: #### 1. 检查当前CUDA版本 可以通过运行以下命令来确认当前已安装的CUDA版本: ```bash nvcc --version ``` 如果需要验证显卡驱动是否支持新的CUDA版本,可以执行以下命令查看驱动状态[^2]: ```bash nvidia-smi ``` #### 2. 卸载现有CUDA版本 为了防止冲突,在安装新版本之前建议先完全卸载现有的CUDA版本。具体操作如下: - 使用APT包管理器卸载CUDA(适用于通过APT安装的情况): ```bash sudo apt-get remove --autoremove nvidia-cuda-toolkit ``` - 如果是从.run文件安装的CUDA,则需手动删除相关目录并清除残留文件: ```bash sudo rm -rf /usr/local/cuda* ``` 此外,还需编辑`/etc/profile`或其他shell初始化脚本,移除与CUDA相关的路径设置。 #### 3. 安装新版CUDA 下载对应于目标系统的CUDA工具包镜像文件,并按照官方文档指导完成部署。例如对于Ubuntu发行版来说,推荐采用`.run`或者.deb方式来进行安装[^1]。 - **方法一**: `.deb`软件包安装法 下载适合您架构类型的`.deb`文件后,利用APT工具处理依赖关系自动完成安装流程。 ```bash sudo dpkg -i cuda-repo-<distro>_<version>_amd64.deb sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/<distro>/x86_64/7fa2af80.pub sudo apt-get update sudo apt-get install cuda ``` - **方法二**: `.run`可执行脚本安装法 此种方式提供了更多自定义选项,但可能会影响图形界面服务启动。 ```bash chmod +x cuda_<version>_linux.run sudo ./cuda_<version>_linux.run ``` 注意:上述两种方法均假设网络连接正常且能够访问NVIDIA开发者站点资源;实际操作前应仔细阅读[NVIDIA CUDA Toolkit Documentation](https://docs.nvidia.com/cuda/)获取最新指南信息。 #### 4. 配置环境变量 安装完成后,需要正确设定PATH和LD_LIBRARY_PATH以便应用程序能找到所需的库位置。一般情况下修改用户的.bashrc或.zshrc即可实现永久生效的效果: ```bash echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc ``` #### 5. 测试安装成果 最后一步是检验整个过程是否顺利完成。重新打开一个新的终端窗口再次调用`nvcc --version`应该显示出最新的编译器版本号。同时也可以尝试编译简单的测试程序样例以进一步验证功能完整性。 --- ### 注意事项 当存在多套不同版本的需求场景下,可通过建立软链接的方式灵活切换使用的默认CUDA版本[^3]。比如创建指向特定版本的符号链接覆盖全局默认值: ```bash ln -sfn /usr/local/cuda-version /usr/local/cuda ``` 对于WSL(Linux子系统)用户而言,由于其特殊的工作机制可能导致某些原生硬件加速特性受限,因此还需要额外关注主机端Windows操作系统上的驱动兼容性和其他潜在限制条件[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值