现在写代码的最时髦“姿势”是什么?
答案也许正是:截图。
没错,就像这样,随便找个网页,截取想要的界面部分,然后“喂”给AI,再附上一句简单的提示:
“参考这个页面,生成一个类似的HTML页面。”
只需要一张图和一句话,AI便能“唰唰唰”地生成代码。
拥有这个功能,前端开发者可以轻松搞定简单的页面代码(甚至连编程新手也能尝试做网页)
而这项功能并非来自国外应用,而是商汤科技今天在全球开发者先锋大会(GDC)上发布的办公小浣熊2.0的新升级。
不得不说,国产AI的技术实力在不断上升
整个发布会最令人印象深刻的,就是商汤办公小浣熊2.0不仅增加了新功能,更重要的是,它将办公AI从一个简单的助手角色,转变为具备自主执行能力的智能体。
接下来,让我们进一步了解这个变化。
办公AI:从有用到好用
截图生成代码,实际上只是办公小浣熊2.0的新功能之一。这次升级,小浣熊融合了“日日新”大模型的原生多模态能力,带来了多模态理解与交互的新体验。
例如:
数据分析是许多办公场景中必不可少的工作之一。借助办公小浣熊2.0,效率提升变得显著。
在数据清洗和预处理阶段,它能自动处理数据中的各种问题:补全缺失值、修正错误、统一格式、去除重复内容、转换数据类型,甚至还能解决文字乱码问题。
这样一来,数据分析的初期阶段就能提高速度和准确性。
为了让数据更加直观,办公小浣熊2.0支持自动化的数据可视化。
它能自动帮你选最合适的图表,生成好看又清晰的图表,重点信息一目了然。
此外,它还支持调整图表样式和布局,甚至能生成互动性图表,即便你不熟悉复杂的工具,也能轻松制作出专业的数据图表。
不仅如此,办公小浣熊2.0还具备模式识别与趋势分析的能力。
它可以帮助发现数据中隐藏的规律,识别时间序列的趋势,找出异常值和波动,预测未来走势,分析不同数据之间的关系。过去需要专业统计知识才能完成的分析任务,现在只需一个AI就能轻松搞定。
下面的例子展示了如何使用小浣熊预测《哪吒2》票房:
若你仍有疑问,或有进一步的需求,我们依然可以通过对话的方式提问。
甚至可以将Excel、txt、Word和PDF等多种文件联动,让AI直接生成一个完整且多模态的报告。
不仅局限于数据分析任务,办公小浣熊2.0将这一模式推广到了几乎所有办公场景。
它的工作流程可以概括为“三步走”:
1.规划(Plan):自主整合全球知识(预训练模型信息)、网络信息(互联网实时数据)和自有数据(私有知识网信息)。
2.分析(Analysis):对数据和文档进行分析,挖掘有效信息。
3.创作(Write):基于前两步生成内容,智能校对信息源并辅助创意创作,完成复杂任务。
简而言之,现在的办公AI已经能够熟练使用人类工具,通过不断反馈执行结果,提升自主工作能力,从而扩展应用场景,创造更大价值。
AI已经从“有用”进化到“好用”。
代码小浣熊的升级
除了办公小浣熊,商汤的代码小浣熊2.0也带来了多项新功能。
相较于以往的代码补全和问答交互,最显著的特点是其多维数据融合和多模态推理能力。
在本地数据融合方面,代码小浣熊2.0像一个智能管家,能够管理个人代码数据和代码仓库,随时帮助你找到并快速复用所需代码,提高开发效率。它还能够整合企业内部云端数据,将孤立的部门数据连接起来,优化团队之间的协作。此外,它还能通过联网检索海量的网络资源,将这些信息加入到本地数据中,进一步拓宽开发思路。
在实操层面,代码小浣熊2.0无论是单行代码还是复杂的多行代码,都能提供补全和修正功能,甚至可以跨文件修改相关任务,极大地提高了开发效率。
同时,它还能执行更多的开发流程操作,例如一键添加注释,支持自然语言连续提问,进一步提升编程体验。
自然语言连续提问:
,时长01:27
对于企业用户,代码小浣熊2.0尤其有用。它不仅能优化代码质量,还能帮助企业高效管理代码资产。通过对代码进行筛查、分析和优化,帮助企业提升软件质量和开发效率,确保长期维护的轻松。
在底层大装置方面,商汤在GDC上推出了LazyLLM,一个面向开发者的开源工具,旨在解决多Agent应用开发的困境。
azyLLM支持开发者用极低的成本构建复杂的AI应用,并可以不断迭代优化。
先来看下一个demo:
以下视频来源于
商汤学术
以下视频来源于
商汤学术
,时长00:30
它的设计简洁且高效。
例如用代码表达一个数学公式,对比LazyLLM、LangChain和LlamaIndex,LazyLLM的代码是真的短了不少:
其次,面对当下众多的调用、部署的“选项”,LazyLLM做到了统一。
能够让开发者通过极少的代码构建强大的AI应用,支持跨平台部署,兼容各种操作系统和云服务。
值得一提的是,它还提供微调的服务,这就更便于客户在垂直领域的应用。
LazyLLM还有一个大亮点,就是开发方便。
例如十行代码就能搭建RAG多路召回应用,三行代码搭建ChatBot,甚至两、三行代码就能在RAG应用中用上自定义的转换规则或者多路召回的策略。
除此之外,LazyLLM的亮点还包括:
-
以数据流为核心的应用开发范式:LazyLLM以数据为核心,可通过Pipeline、Parallel、Switch、If、Loop、Diverter、Warp、Graph等数据流拼接已有组件或其他开源软件,并支持在应用开发过程中持续迭代数据,从而不断提升数据效果。
-
像搭积木一样开发大模型应用:LazyLLM通过精细化模块设计和符合直觉的代码风格,使开发者能够更快地实现想法产品落地,同时真正像搭积木一样,把意图识别、知识库检索能力、大模型能力等快速拼到一起,实现完整应用。
-
复杂应用一键部署:LazyLLM利用轻量网关实现分布式应用一键部署,助力用户快速实现产品落地。当智能体开发完成后,应用者能够一键将其部署到网页、企业微信、钉钉等平台。同时,框架还支持跨平台、不同操作系统,以及不同底层云的基础设施。
-
多Agent编排:封装FunctionCall、React、ReWOO、PlanAndSolve等多种Agent。
-
跨平台:兼容多个操作系统(如Windows、OS或Linux)和多种IaaS平台(如裸金属、K8s、slurm、公有云)。
总来看,商汤通过LazyLLM和万象平台大大降低了AI应用开发的门槛,即便是初级开发者,也能通过简单的拼接和模块化设计,快速构建复杂的AI应用。
这种低门槛的开发方式让更多企业和个人能参与到AI的创新中,推动了技术的普及与应用。