2024年软件设计师下半年上午题真题卷(内部机构)

 

### 2024下半年软件设计师下午真题及答案解析 #### 目概述 根据已知的参考资料[^1],2024下半年软件设计师考试涉及多个技术领域的内容,包括但不限于算法设计、数据结构应用以及实际编程能力测试。以下是部分 afternoon session 的目及其详细解答。 --- #### 下午场试一:动态规划——钢条切割问 ##### 目描述 给定一根长度为 n 英寸的钢条和一个价格表 p[i] (表示长度 i 英寸的价格),目标是通过切割钢条获得最大价值 r[n]。允许对钢条进行任意次切割,每种切割方式对应不同的收益组合。 **输入**: - 整数数组 `p` 表示不同长度的价格列表。 - 整数 `n` 表示钢条总长度。 **输出**: 返回能够实现的最大收益值 `r[n]` 及其对应的最优切割方案。 ##### 解决方法 此问是典型的 **动态规划** 应用场景之一。基于引用中的递推关系[^2]: \[ r_n = \max_{1\leqslant i\leqslant n} (p_i + r_{n-i}) \] 其中 \( r_0 = 0 \) 是初始条件。 为了记录每次分割的具体位置以便后续还原路径,在计算过程中引入辅助变量 `s[n]` 来保存当前最佳决策的第一刀切点索引。 下面是完整的 Python 实现代码: ```python def cut_rod(p, n): # 初始化两个数组用于存储子问的结果和切割策略 r = [float('-inf')] * (n + 1) s = [-1] * (n + 1) r[0] = 0 # 边界情况初始化 for j in range(1, n + 1): # 对于每一个可能的杆长j max_revenue = float('-inf') for i in range(1, j + 1): # 尝试所有的第一刀切割点i if p[i - 1] + r[j - i] > max_revenue: max_revenue = p[i - 1] + r[j - i] s[j] = i r[j] = max_revenue return r[n], reconstruct_solution(s, n) def reconstruct_solution(s, n): """重构并打印具体的切割方案""" cuts = [] while n > 0: cuts.append(s[n]) n -= s[n] return sorted(cuts)[::-1] # 测试案例 prices = [1, 5, 8, 9, 10, 17, 17, 20, 24, 30] # 假设这是前十个单位长度的价格 length_of_rod = 10 optimal_value, cutting_plan = cut_rod(prices, length_of_rod) print(f"对于长度 {length_of_rod} 的钢条:") print(f"- 最大收益为: {optimal_value}") print(f"- 切割计划为: {cutting_plan}") # 输出具体如何切割达到该收益 ``` 运行以上程序可以得出针对特定长度钢条的最佳切割方案与其产生的最高经济回报。 --- #### 下午场试二:数据库查询优化 ##### 目背景 一家电子商务公司维护着一张商品销售记录表 `sales` ,其中包括字段 `product_id`, `quantity_sold`, 和 `sale_date`. 要求编写 SQL 查询语句来统计每个月各类产品的销量总数,并讨论几种提高查询效率的方法。 ##### SQL 查询脚本 下面提供了一个基础版本的 SQL 查询命令: ```sql SELECT product_id, DATE_FORMAT(sale_date, '%Y-%m') AS month_year, SUM(quantity_sold) as total_quantity FROM sales GROUP BY product_id, month_year; ``` ##### 性能改进措施 1. 创建复合索引(`product_id`, `sale_date`)以加速过滤与分组操作; 2. 如果存在大量历史数据未被频繁访问,则可考虑分区(partitioning)按时间维度分开管理; 3. 使用物化视图(Materialized View)预先缓存聚合结果减少实时计算开销; 这些技巧都能有效降低执行耗时提升响应速度[^1]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值