【大模型面试】20道必问!面试中的提示工程高频问题全攻略,看这一篇就够了!

在当今的人工智能领域,提示工程(Prompt Engineering)已经成为一项备受追捧的技能。无论是技术团队、产品团队还是内容团队,越来越多的角色都需要掌握这一技能。那么,什么是提示工程?它为什么如此重要?在面试中,又会遇到哪些关于提示工程的问题呢?今天,我们就来深入探讨一下。
img

一、什么是提示工程师?

提示工程师是一群专注于为生成式人工智能模型设计、测试和优化输入的专业人士。他们就像是语言模型的“引导者”,通过精心设计的提示,让模型能够产生最理想的输出。虽然有些岗位明确标注为“提示工程师”,但在很多情况下,其他岗位也对提示工程技能提出了要求。

二、哪些岗位需要提示工程技能?

1. 提示工程师 / AI提示设计师

他们专注于为特定用途(如内容创作、数据分析或代码生成)设计提示。这需要对语言结构、分词和模型行为有深刻的理解,才能提供可靠的结果。

2. 机器学习工程师(LLM/NLP方向)

这些工程师负责构建AI流程和微调模型。提示工程帮助他们在开发过程中与基础模型交互,调试输出,并在不重新训练的情况下微调模型行为。

3. AI产品经理 / 技术产品经理

产品经理需要利用提示工程来原型化功能、评估LLM性能,并减少幻觉(hallucinations)。他们还需要与工程团队合作,通过输入设计优化系统行为。

4. 对话式AI / 聊天机器人开发者

这个角色涉及设计提示流程、维护用户上下文,并确保对话的一致性。提示工程帮助他们构建准确、相关且安全的交互结构。

5. 生成式AI内容专家 / AI作家

这些创意专家通过提示生成高质量的内容,如博客、营销文案或视频脚本。他们对提示结构的掌握有助于控制语气、提高事实性和编辑效率。

6. AI界面的UX设计师

这些专业人士使用提示来增强用户与AI的交互。他们专注于清晰地指导模型,同时确保生成的输出符合可用性和语气指南。

7. AI研究员 / 数据科学家

提示工程是设计评估设置、执行基准测试和生成合成数据集的关键。它帮助AI研究员和数据科学家确保LLM实验的可重复性和精确性。

8. AI安全与伦理分析师

这个角色使用提示来测试不安全、有偏见或有害的输出。对抗性提示和输出审计的技能对于确保LLM的安全性和合规性至关重要。

三、20道提示工程面试问题及答案

Q1. 什么是提示工程,为什么它很重要?

答案:提示工程是设计输入的过程,这些输入可以引导语言模型产生期望的输出。它很重要,因为同一个模型可能会根据提示的不同而给出截然不同的回答。掌握提示工程意味着你可以在不直接微调模型的情况下,获得准确、相关且安全的结果。

Q2. 你是如何设计有效提示的?

答案:我通常会遵循一个框架。首先定义模型的角色,然后提供清晰的任务,并添加相关的上下文或约束条件。我还会指定我希望得到的响应格式。最后,我会测试提示,并根据模型的响应进行迭代改进。

Q3. 零样本、单样本和少样本提示有什么区别?

答案:零样本提示不提供任何示例,期望模型能够泛化出回答。单样本方法为模型提供一个示例作为参考。少样本则包括2 - 5个示例,帮助模型更清晰地理解需求。少样本提示通常通过为模型提供模式来提高性能,尤其是在复杂任务中。

Q4. 你能解释一下思维链提示(Chain - of - Thought Prompting)以及它的用途吗?

答案:思维链提示引导模型在给出答案之前进行逐步推理。我在处理数学、逻辑和多跳问题等任务时会使用它,因为结构化思维可以提高准确性。

Q5. 你是如何衡量提示质量的?

答案:我会查看响应的相关性、连贯性和事实准确性。我还会检查提示是否能够在一次尝试中完成任务。如果适用,我会使用BLEU或ROUGE等指标。此外,我还会收集用户反馈,并在边缘案例中进行测试以验证可靠性。

Q6. 跟我们讲讲你通过改进提示来提高模型输出质量的经历。

答案:在一个聊天机器人项目中,初始输出非常笼统。于是,我重新设计了提示,加入了机器人的角色设定,增加了任务上下文,并给出了输出约束。这使得输出的相关性提高了,同时将回退响应减少了40%。

Q7. 你在提示开发和测试中使用了哪些工具?

答案:我会使用像OpenAI、Claude Console这样的游乐场,以及通过API的笔记本。为了扩展,我会将提示集成到Jupyter + LangChain流程中,设置提示日志和批量测试。

Q8. 你是如何减少模型输出中的幻觉的?

答案:我会限制提示只使用可验证的数据,提供背景上下文,并重新表述模糊的指令。对于高风险的用例,我还会将输出与检索增强的输入进行对比测试。

Q9. 温度(Temperature)和top_p如何影响输出?

答案:温度控制响应的随机性。接近0的值会给出更确定、更符合事实的结果。top_p调整要考虑的概率质量大小。对于创意任务,我会使用更高的值;对于事实性任务,我会保持较低的值。

Q10. 什么是提示注入,你如何防范它?

答案:提示注入是指用户输入操纵或覆盖提示指令的情况。为了防范它,我会对输入进行清理,将用户查询与系统提示分开,并使用严格的分隔符和编码。

Q11. 你会如何提示一个LLM来总结长文本而不丢失关键信息?

答案:我会将输入分成块,让模型提取每个部分的关键点,然后将它们合并。我还会指定要保留的信息类型,比如名字、数字或结论。

Q12. 你如何为多语言或跨文化环境调整提示?

答案:我会使用翻译后的提示、当地习语和文化相关的例子。我还会测试模型在不同语言中的行为,并根据文化规范调整语气和正式程度。

Q13. 在设计提示时,你会考虑哪些伦理问题?

答案:我会避免使用带有偏见的语言,确保提示在人口统计学上是中立的,并对其进行偏见测试。在高影响力的情况下,我会引入人工审核来验证安全性和公平性。

Q14. 你如何记录和版本化提示设计?

答案:我会维护一个带有元数据(目标、模型、版本、输出样本、最后测试日期)的提示库。版本控制有助于跟踪迭代,尤其是在跨团队协作时。

Q15. 什么是检索增强生成(Retrieval - Augmented Generation,RAG),它对提示有什么影响?

答案:RAG会在提示模型之前检索相关文档。提示需要清晰地上下文化检索到的信息。这有助于提高事实准确性,非常适合回答时效性强或特定领域的问题。

Q16. 你会如何培训一个初级队友进行提示工程?

答案:我会从简单的任务开始,比如重新表述指令、尝试不同的语气和分析输出。然后,我们会转向提示库、测试方法和链式技术,所有这些都会提供实时反馈。

Q17. 描述一次提示失败的经历以及你是如何解决的。

答案:我曾经在一个数据提取任务中使用了一个模糊的提示。模型错过了关键字段。我重新设计了提示,使用了项目符号指令和字段示例。准确率提高了30%以上。

Q18. 人们在写提示时最大的错误是什么?

答案:过于模糊或开放。模型会按字面意思理解,所以提示需要具体。此外,不针对边缘案例进行测试,会错过发现提示弱点的机会。

Q19. 你如何提示生成结构化输出(如JSON或表格)?

答案:我会在提示中明确指定格式。例如:“以这种JSON格式返回结果……”我还会提供示例。对于API,我有时会将指令包装在代码块中,以避免格式错误。

Q20. 你认为提示工程的未来会怎样?

答案:我认为它会更多地融入产品和开发流程中。我们会看到能够自动生成或优化提示的工具,提示工程将与UI设计、模型微调和AI安全操作相结合。

四、面试提示工程问题的实用技巧

1. 总是迭代思考

解释你不会期望第一次就得到完美的输出。展示你测试、改进和迭代提示的能力,通过小的改动和有结构的实验来实现。

2. 使用真实案例

即使你没有直接在AI领域工作过,也可以展示你如何使用ChatGPT、Claude等工具来自动化任务、生成想法或通过提示解决具体问题。

3. 关注框架和结构

面试官喜欢有结构的思考。使用框架,如:角色 + 任务 + 约束 + 输出格式。解释你如何以可重复和逻辑的方式设计提示。

4. 展现对LLM限制的了解

提到令牌限制、幻觉、提示注入攻击或由温度引起的随机性。展示你对模型怪癖的理解,会让你听起来像个专家。

5. 强调伦理、测试和多样性

优秀的提示工程师会考虑公平性和安全性。谈论你如何在不同人群中测试提示,防止偏见或包含多样化的例子。

五、总结

提示工程是与当今和未来的AI模型合作的基础技能。无论你是编写代码、构建产品、设计界面还是生成内容,知道如何构建提示是解锁生成式AI全部潜力的关键。通过准备上述20个问题的答案,你肯定能在任何相关角色的面试中表现出色。只要专注于将你的回答基于真实世界的例子、有结构的思考和伦理意识,我相信你会脱颖而出,成为一个有能力、有思想且面向未来的AI专业人士。所以,如果你想获得下一份AI面试的机会,就开始用这些问题进行练习吧,保持好奇心,继续提示!

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值