自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(311)
  • 收藏
  • 关注

原创 Fréchet Inception Distance(FID)

Fréchet Inception Distance(FID)是一种评估生成模型性能的指标,特别是在图像生成领域。它通过比较生成的图像与真实图像在特征空间中的分布差异来评估生成图像的质量。它迅速成为图像生成领域最常用的评估指标之一,并被广泛应用于各种生成模型的评估,如变分自编码器(VAEs)、自回归模型等。通过综合考虑均值和协方差的差异,FID能够全面地评估生成图像与真实图像在特征空间中的相似度。通过计算FID,研究人员可以量化生成图像与真实图像之间的差异,从而更好地理解和改进生成模型。

2025-06-04 23:17:04 908

原创 Beta分布&Dirichlet分布

两者的概率密度函数都具有幂函数的形式,其中Beta分布是一维的,而Dirichlet分布是多维的。Dirichlet分布可以看作是Beta分布的多维推广。Dirichlet分布是定义在K维实数向量上的多项分布的共轭先验,通常用于模拟多类别分布。这些分布的概率密度函数在贝叶斯统计和机器学习中非常重要,因为它们提供了一种自然的方式来表示和处理概率分布。Beta函数是两个伽马函数的比值,它确保了概率密度函数的积分总和为1。Beta分布和Dirichlet分布的概率密度函数都涉及到了伽马函数。

2025-06-04 23:16:35 1024

原创 自然图像数据集

本文介绍了四个常用计算机视觉数据集:1) CIFAR-10包含10类32x32图像(6万张),用于基础分类任务;2) CIFAR-100扩展为100类,提供更细粒度分类挑战;3) AFHQ包含1.5万张512x512动物面部图像,适用于高分辨率处理;4) FFHQ提供7万张1024x1024高清人脸图像,支持复杂人脸分析任务。这些数据集由权威团队整理,广泛应用于深度学习模型的基准测试,覆盖从基础分类到高分辨率图像处理等多个研究领域。

2025-06-03 20:07:46 522

原创 当前用户的Git本地配置情况:git config --local --list

Git本地配置查询可通过git config --local --list命令实现。关键配置项包括:仓库格式版本(repositoryformatversion)、文件权限处理(filemode)、仓库类型(bare)、引用日志记录(logallrefupdates)、符号链接处理(symlinks)和大小写敏感性(ignorecase)。这些设置决定了Git在版本控制中的具体行为,如是否跟踪文件权限和符号链接,以及如何处理文件名大小写差异。配置值多为布尔类型,false/true表示禁用/启用对应功能。

2025-06-03 19:58:37 639

原创 当前用户的Git全局配置情况:git config --global --list

Git全局配置查询可通过git config --global --list查看。主要配置包括:禁用SSL验证(不推荐)、GitLFS相关设置(大文件处理),以及提交用户信息(用户名和邮箱)。其中GitLFS配置涉及文件检出/提交时的自动解压/压缩,并强制大文件跟踪。这些配置定义了Git的全局行为,但需注意禁用SSL验证会降低安全性。

2025-06-02 17:46:59 575

原创 【清晰教程】查看和修改Git配置情况

Git配置管理指南:通过命令行可查看Git版本(git --version)及各层级配置。查看配置分为全局(--global)、本地(--local)和特定键值查询。修改配置使用git config <key> <value>格式,如设置全局用户名和邮箱(--global user.name/email)。这些命令帮助开发者管理Git环境配置。

2025-06-02 17:44:19 826

原创 Hölder Statistical Pseudo Divergence & Proper Hölder Divergence

Hölder Statistical Pseudo Divergence是一种度量两个概率分布。Proper Hölder Divergence通过引入权重参数。差异的方法,它基于Hölder不等式。来平衡两个分布的贡献,从而满足对称性。

2025-06-01 17:31:34 612

原创 图像数据如何表示为概率单纯形

本文介绍了如何将图像数据转换为概率单纯形的方法。对于灰度图像,通过归一化像素值总和得到概率分布;彩色图像则分别归一化红、绿、蓝三个通道。转换后的数据满足概率单纯形条件:非负性和归一化。这种表示在图像分类、聚类和生成等任务中具有重要应用价值,能提升模型性能。

2025-06-01 16:38:05 945

原创 概率单纯形(Probability Simplex)

摘要: 概率单纯形是由非负且和为1的向量构成的集合,几何上呈现为低维的线段、三角形或高维复杂形状。它具有凸集、紧集和极点等数学性质,广泛应用于统计学(概率分布、贝叶斯推断)、机器学习(分类、聚类、生成模型)和信息论(熵、相对熵)。在优化问题中,它作为约束条件或投影操作出现,同时在经济学和生物学中用于建模选择概率与基因分布。概率单纯形为多领域提供了统一的概率分布表示框架。

2025-06-01 16:27:59 917

原创 【清晰教程】利用Git工具将本地项目push上传至GitHub仓库中

本文介绍了使用Git工具和GitHub仓库管理项目的基本流程:1. 在GitHub创建仓库并设置基本信息;2. 初始化本地Git仓库;3. 将文件添加到暂存区并提交更改;4. 连接远程仓库并推送文件。文章详细说明了GitHub仓库创建的选项配置,包括模板选择、公开权限等,并提供了常见报错的解决方案(如身份验证错误、分支匹配问题)。通过git init/add/commit/push等命令完成版本控制操作,实现本地与远程仓库的同步管理。

2025-05-30 23:11:33 1865

原创 【解决办法】Git报错Author identity unknown. 或 fatal: unable to auto-detect email address xxx.

新设备初次使用Git时若出现“Author identity unknown”等报错,是因为缺少用户身份配置。解决方法: 全局设置:通过命令 git config --global user.name/email 配置用户名和邮箱; 单仓库设置:在仓库目录下执行相同命令,去掉 --global 参数; 验证配置:使用 git config --list 检查设置。 确保提交操作前完成身份信息配置,避免报错。

2025-05-30 23:00:02 220

原创 【解决办法】Git报错error: src refspec main does not match any.

在Git推送时遇到"error: src refspec main does not match any"错误,原因是本地分支名称(master)与远程分支名称(main)不匹配。解决方法:通过git checkout -b main创建并切换到main分支,然后执行推送。如需删除旧master分支,可使用git branch -D master。此问题通常由Git版本变更导致的分支命名差异引起。

2025-05-30 21:26:35 672

原创 正交多项式

次多项式,如果多项式序列。

2025-02-19 16:22:45 771 1

原创 求解一次最佳平方逼近多项式

上的一个一次最佳平方逼近多项式。

2025-02-19 16:16:54 975

原创 勒让德多项式

正交化得到的多项式称为勒让德多项式,并用。

2025-02-18 13:53:03 1111

原创 8K样本在DeepSeek-R1-7B模型上的复现效果

此外,Qwen2.5- 7 B-SimpleRL-Zero的平均性能优于Qwen-2.5-Math-7 B-Instruct,并且与最近发布的Eurus-2- 7 B-PRIME和rStar-Math-7 B大致相当,后者也基于Qwen-2.5-Math-7 B。其中,Qwen2.5-7B-SimpleRL-Zero是在Qwen2.5-Math-7B基础模型上仅使用纯PPO方法训练的,仅采用了MATH数据集中的8K样本。他们推测,这可能是因为从QwQ提取的推理模式不适合小型策略模型,或超出了其能力范围。

2025-02-18 09:30:00 372

原创 Hermite 插值

不少实际问题不但要求在节点上函数值相等,而且还要求它的导数值相等,甚至要求高阶导数值也相等。满足这种要求的插值多项式就是 Hermite 插值多项式。下面只讨论函数值与导数值个数相等的情况。个条件,可唯一确定一个次数不超过。

2025-02-17 23:32:06 569

原创 求解插值多项式及其余项表达式

由给定条件,可确定次数不超过3的插值多项式。的插值多项式及其余项表达式。内有五个零点(重根算两个)。其中A为待定常数,可由条件。由Rolle 定理,

2025-02-17 23:30:07 1861

原创 分段线性插值

分段线性插值,就是将插值点用折线段连接起来逼近f(x)。若用插值基函数表示,则I_h(x)在整个区间[a,b]上可表示为。

2025-02-16 21:09:38 577

原创 等距节点插值公式

将 Newton 差商插值多项式中各阶差商用相应差分代替,就可得到各种形式的等距节点插值公式,例如常用的前插公式与后插公式。上式称为 Newton 前插公式,其余项为。,应用 Newton 插值公式,插值点应按。上式称为 Newton 后插公式,其余项为。代入Newton插值公式,则有。

2025-02-15 17:48:58 938

原创 差分的性质

例如Δnfk​E−Infk​j0∑n​−1jjn​En−jfk​j0∑n​−1jjn​fnk−j​∇nfk​1−E−1nfk​j0∑n​−1n−jjn​Ej−nfk​j0∑n​−1n−jjn​fkj−n​其中jn​j!nn−1⋯n−j1​为二项式展开系数.

2025-02-14 23:36:43 692

原创 差分及其性质&不变算子&移位算子

分别称为向前差分算子、向后差分算子及中心差分算子。除了已引人的差分算子外,常用算子符号还有不变算子。为步长的向前差分、向后差分及中心差分。如果用函数表的值,一阶中心差分应写成。这两个值,实际上不是函数表上的值。利用一阶差分可定义二阶差分为。

2025-02-14 15:23:45 761

原创 Newton 差商插值多项式

为 Newton 差商插值多项式。显然满足插值条件,且次数不超过。把后一式代人前一式,可得到。

2025-02-13 20:26:50 655

原创 差商及其性质

这个性质也表明差商与节点的排列次序无关,称为差商的对称性,即。(3) 由Rolle定理,若。阶差商可表示为函数值。(2)由(1)进一步可得。(1)由数学归纳法,

2025-02-13 19:16:03 1091

原创 CountDown中复现DeepSeek R1-Zero的效果

基础模型或指令模型都可以工作 - 指令模型学习速度更快,但收敛到与基本模型相同的性能 - 指令模型的输出更加结构化和可读性,因此,不需要额外的指令调优,这符合R1-Zero的设计决策。其中,3B模型表现出一种较明显的现象,3B模型最初为实现correct formatting减少了输出长度,但之后增加了思想链长度以获得更好的性能。游戏生成一个三位数的目标数字,玩家需要在30秒内通过加、减、乘、除等基本运算,用所选的数字尽可能接近目标数字。示例中,模型提出了解决方案,自我验证,并反复纠正,直到解决问题为止。

2025-02-12 22:44:45 1007

原创 Aitken 逐次线性插值

计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。满足插值条件,称其为 Aitken 逐次线性插值公式。一般情况,两个k 次插值多项式可通过线性插值得到。用 Lagrange 插值多项式。

2025-02-10 23:40:20 1056

原创 【清晰教程】本地部署DeepSeek-r1模型

安装方式因系统而异,例如在 macOS 上可以通过 Homebrew 安装。Ollama 是一个开源工具,专注于简化大型语言模型(LLMs)的本地部署和管理。它允许用户在本地计算机上运行各种 AI 大模型(如 Llama、DeepSeek、Mistral 等),而无需依赖云服务。安装完成后,Ollama 会在后台自动运行,默认端口是 11434。:支持在本地计算机上运行大型语言模型,确保数据隐私和低延迟。安装完成后,通过命令行检查Ollama的安装情况。:开源项目,拥有活跃的社区支持。

2025-02-10 22:34:31 3757

原创 线性插值、抛物差值的计算&截断误差的估计

这个结果与六位有效数字的正弦函数表完全一样,这说明查表时用二次插值精度已经足够。抛物插值计算 sin0.3367。线性插值及抛物插值计算。的值,并估计截断误差.为节点,则线性插值为。

2025-02-08 16:08:15 1016

原创 插值多项式的余项

是满足节点条件的插值多项式,则对于任何。也称为插值多项式的余项或插值余项.根据插值条件及余项定义,可知。的两个零点间至少有一个零点,故。再应用 Rolle 定理,可知。内至少有一个零点,记作。根据 Rolle 定理。上一个固定点,作函数。

2025-02-08 14:37:16 739

原创 n次插值基函数&Lagrange 插值多项式

Lagrange插值多项式

2025-02-07 18:32:11 538

原创 【清晰教程】通过Docker为本地DeepSeek-r1部署WebUI界面

其功能强大,支持 Markdown 和 LaTeX、本地 RAG 集成、多语言、多模型对话、网络搜索和图像生成集成,还具备语音和视频通话功能,满足多样化需求。基于本地部署的 DeepSeek 能提供高度的灵活性和定制化能力,支持多语言、可扩展的插件功能,能够根据用户需求优化性能和配置。它为开发者、研究者和企业提供了便捷的 AI 应用部署和访问方式,尤其适合对数据隐私要求较高的场景,能够快速搭建生成式 AI 应用,具有不错的用户体验。创建管理账户,设置账号,邮箱,密码。进入UI界面,开始使用。

2025-02-07 09:00:00 13054 4

原创 线性插值(一次插值)

L_1(x)$的表达式可由几何意义直接给出,即。为一次插值基函数或线性插值基函数。的线性组合得到的,其系数分别为。也是线性插值多项式,在节点。)的几何意义就是通过两点(,要求线性插值多项式。

2025-01-15 09:04:25 941

原创 插值多项式的存在唯一性

要证明插值多项式的存在唯一,只要证明方程组的解存在唯一,也就是证明方程组的系数行列式。称为 Vandermonde 行列式.,故方程组存在唯一的一组解。存在唯一,就是指在集合。的插值多项式存在唯一。

2025-01-15 08:56:33 850

原创 插值函数和插值多项式

有的函数虽有解析表达式,但由于计算复杂,使用不方便,通常也造一个函数表,如三角函数表、对数表、平方根和立方根表等。为了研究函数的变化规律,往往需要求出不在表上的函数值。来表示某种内在规律的数量关系,其中相当一部分函数是通过实验或观测得到的。因此,可以根据给定的函数表构造一个既能反映函数。为插值多项式,相应的插值法称为多项式插值;上是存在的,有的还是连续的,但却只能给出。称为插值节点,包含插值节点的区间。为分段的多项式,就称之为分段插值;成立,这便是插值多项式的应用。称为插值区间,求插值函数。

2025-01-13 20:49:42 1254

原创 简化计算步骤以减少误差

同样一个计算问题,若能减少运算次数,既可以节省计算机的计算时间,还可以减小舍人误差。

2025-01-13 20:39:50 432

原创 要防止大数“吃掉”小数

大数“吃掉”小数是一种形象化的说法,实际是因计算位数限制导致的计算误差。在数值运算中,参加运算的数有时数量级相差很大,而计算机位数有限,如不注意运算次序就可能出现大数“吃掉”小数的现象,影响计算结果的可靠性.

2025-01-12 13:19:44 753

原创 要避免两相近数相减

在数值计算中,两相近数相减会导致有效数字严重损失。例如,x532.65y532.52都有五位有效数字,但x−y0.13只有两位有效数字。必须尽量避免出现这类运算,最好是改变计算方法,防止这种现象产生。

2025-01-12 13:10:28 913

原创 要避免除数绝对值远远小于被除数绝对值的除法

用绝对值小的数作除数,舍人误差会增大,如计算yx​,若0∣y∣∣x∣,则可能对计算结果带来严重影响,应尽量避免。

2025-01-12 12:59:31 985

原创 场地面积的误差分析

的绝对误差限与相对误差限。

2025-01-11 21:28:08 664

原创 数值运算的误差估计

更一般的情况是,当自变量有误差时,计算函数值也会产生误差。这种误差限可利用函数的 Taylor 展开式进行估计。的高阶项,于是可得计算函数的误差限为。进行加减运算得到的误差限为。进行乘法运算得到的误差限为。进行除法运算得到的误差限为。,可用 Taylor 展开。由 Taylor 展开,得。的比值不太大,可忽略 ε。

2025-01-11 21:24:09 1004

Python企业排名、地域分布与词云分析数据集

Python企业排名、地域分布与词云分析数据集

2024-09-02

生成式深度学习数学原理.pdf

生成式深度学习数学原理.pdf

2024-07-21

HCCDA – AI华为云人工智能开发者认证60判断题及答案.docx

HCCDA – AI华为云人工智能开发者认证60判断题及答案+针对华为云人工智能开发者认证理论考试+原题题库

2023-09-13

C语言程序设计期末试题及答案详解1.pdf

C语言程序设计期末试题及答案详解1.pdf

2023-09-11

C语言程序设计期末试题及答案解析1-3.pdf

C语言程序设计期末试题及答案解析1-3.pdf

2023-09-10

C语言程序设计期末试题及答案解析1-2.pdf

C语言程序设计期末试题及答案解析1-2.pdf

2023-09-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除