1.激活函数的作用
单纯的神经网络只能够处理线性数据,而激活函数所起到的作用就是在神经网络中加入了非线性因素,使得神经网络可以拟合各种曲线,进而能够对非线性的数据进行处理,用来解决线性模型表达能力不足的问题,进一步提高神经网络的拟合能力,能够适应更多不同场景的应用。
2.如何解决过拟合?
导致过拟合的原因有训练数据量少,模型过于复杂。常见解决方法有:
- 增加训练数据量
- Batch Normalization
- Dropout
- Early Stopping
- L1/L2正则化
3.常见的正则化方法
正则化的本质是针对某一问题加以先验限制条件或约束以达到某种目的的一种手段。
常见的正则化方法有L1正则化和L2正则化,它们是在损失函数中添加一个正则项。
- L1正则项是指权值向量中各个元素的平均值之和。
- L2正则项是指权值向量中各个元素的平方和然后再求平方根。
4.批量归一化的作用
神经网络的训练过程本质上就是学习数据分布,如果训练数据与测试数据分布不同将大大降低网络的泛化能力,因此需要在训练开始前对所有的输入数据进行归一化处理。
在训练过程中进入网络结构的一般都是一个m