监督学习基本知识简记

一、概念

1、定义

监督学习(supervised learning)是指从标注数据中学习预测模型的机器学习问题。

2、标注数据

标注数据表示输入输出的对应关系

3、预测模型

预测模型对给定的输入产生相应的输出。

4、本质

监督学习的本质是学习输入到输出的映射的统计规律

5、输入与输出空间

在监督学习中, 将输入与输出所有可能取值的集合分别称为输入空间(inputspace)与输出空间(output space)。

输入与输出空间可以是有限元素的集合, 也可以是整个欧氏空间。

输入空间与输出空间可以是同一个空间, 也可以是不同的空间, 但通常输出空间远远小于输入空间。

6、实例

每个具体的输入是一个实例(instance),通常由特征向量(feature vector)表示。

所有特征向量存在的空间称为特征空间(feature space)

7、特征空间与特征

特征空间的每一维对应于一个特征。

有时假设输入空间与特征空间为相同的空间, 对它们不予区分;

有时假设输入空间与特征空间为不同的空间, 将实例从输入空间映射到特征空间。

模型实际上都是定义在特征空间上的。

二、数据

1、输入与输出

在监督学习中, 将输入与输出看作是定义在输入(特征)空间与输出空间上的随机变量的取值。

输入输出变量用大写字母表示, 习惯上输入变量写作X,输出变量写作Y。

输入输出变量的取值用小写字母表示, 输入变量的取值写作x, 输出变量的取值写作y

变量可以是标量或向量, 都用相同类型字母表示

2、训练数据

监督学习从训练数据(training data)集合中学习模型, 对测试数据(test data)进行预测。 训练数据由输入(或特征向量)与输出对组成

3、测试数据

测试数据也由输入与输出对组成,表示方法与训练数据相同。

输入与输出对又称为样本(sample)或样本点

三、模型

1、联合概率分布

假设输入与输出的随机变量X和Y遵循联合概率分布P(X,Y)

P(X,Y)为分布函数或分布密度函数

对于学习系统来说,联合概率分布是未知的,

训练数据和测试数据被看作是依联合概率分布P(X,Y)独立同分布产生的。

2、假设空间

监督学习目的是学习一个由输入到输出的映射,称为模型

模式的集合就是假设空间(hypothesis space)

概率模型:条件概率分布P(Y|X)

决策函数:Y=f(X)

四、过程

1、流程

监督学习利用训练数据集学习一个模型, 再用模型对测试样本集进行预测。

由于在这个过程中需要标注的训练数据集, 而标注的训练数据集往往是人工给出的, 所以称为监督学习。

监督学习分为学习和预测两个过程, 由学习系统与预测系统完成

2、学习过程

在学习过程中,学习系统利用给定的训练数据集, 通过学习(或训练)得到一个模型, 表示为条件概率分布或决策函数。 

3、预测过程

预测系统对于给定的测试样本集中的输入,由模型给出相应的输出。

4、学习系统

学习系统(学习算法)试图通过训练数据集中的样本带来的信息学习模型。

具体地说, 对于输入,一个具体的模型可以产生一个输出,而训练数据集中会有对应的输出。

如果这个模型有很好的预测能力, 训练样本输出和模型输出之间的差就应该足够小。

学习系统通过不断地尝试, 选取最好的模型, 以便对训练数据集有足够好的预测, 同时对未知的测试数据集的预测也有尽可能好的推广。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

well_fly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值