优化BP神经网络的负荷及天气预测算法——基于布谷鸟算法附Matlab代码

164 篇文章 ¥99.90 ¥299.90
文章探讨了BP神经网络在负荷及天气预测中的局限性,提出使用布谷鸟算法进行优化,以解决训练速度慢和局部极小值问题。通过Matlab实现并测试,结果显示优化后的网络预测性能提升,显示出该算法的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优化BP神经网络的负荷及天气预测算法——基于布谷鸟算法附Matlab代码

近年来,BP神经网络因其强大的数据拟合能力在各个领域广泛应用。然而,在实际应用中,BP神经网络也存在训练速度慢、容易陷入局部极小值等问题。为了解决这些问题,传统的BP算法已经不太适用,需要新的优化算法来提高BP神经网络的性能。

布谷鸟算法是一种基于仿生学的优化算法,具有全局收敛性和较快的搜索速度。本文将通过将布谷鸟算法应用于BP神经网络,来进行负荷及天气预测。

(下面是算法实现部分的源代码)

% 命名为gu_bpn.m 
% BP神经网络的输入格式为输入数据x和输出数据y
function [net,best_x]=gu_bpn(net
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编码实践

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值