线性最小二乘法推导

本文详细介绍了线性最小二乘法的代数形式和矩阵形式推导过程,包括从误差平方和最小化的角度建立损失函数,通过求导找到最优解,并给出矩阵形式的解决方案。内容涵盖从一元线性回归到多元线性回归的矩阵表达,适合机器学习初学者深入理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文首发在我的个人博客:https://jlice.top/p/7ka8s/。欢迎大家前去参观,么么哒~

代数形式

最小二乘法在中学时讲过。有一些散点有线性的趋势,用一个一次函数去拟合,使得差距最小化。

https://jlice-top.oss-cn-beijing.aliyuncs.com/45b9170c002211e989fc509a4c21c90b.jpg

假设数据点为 \((x_1, y_1), (x_2, y_2),\dots,(x_m, y_m)\) ,使用如下一次函数去拟合:

\[ y = w_1 x + w_0 \]

对于 \(x_i\) ,采用上述函数计算出的结果记为 \(\hat{y_i}\) ,即:

\[ \hat{y_i} = w_1 x_i+w_0 \]

定义差距为:

\[ \sum_{i=1}^m (y_i - \hat{y_i})^2 \]

现需要最小化这个差距。显然,上式为关于 \(w\_0\) 和 \(w\_1\) 的函数(损失函数)。为了方便,将 \(\sum\limits\_{i=1}^m\) 简记为 \(\sum\) ,记:

\[ \begin{split} f(w_0, w_1) &= \sum (y_i - \hat{y_i})^2 \\ &= \sum (y_i - (w_1 x_i + w_0))^2 \\ &= \sum (y_i^2 - 2y_ix_iw_1 - 2y_iw_0 + x_i^2w_1^2 + w_0^2 + 2x_iw_0w_1) \\ \end{split} \]

分别对 \(w_0, w_1\) 求偏导:

\[ \begin{split} \frac {\partial f} {\partial w_0} &= \sum (-2y_i + 2w_0 + 2x_iw_1) \\ &= -2 \sum {y_i} + 2mw_0 + 2w_1 \sum {x_i} \\ \frac {\partial f} {\partial w_1} &= \sum (-2x_iy_i + 2x_i^2w_1 + 2w_0x_i) \\ &= -2\sum{x_iy_i} + 2w_1\sum {x_i^2} + 2w_0\sum {x_i} \\ \end{split} \]

令:

\[ \begin{split} \frac {\partial f} {\partial w_0} &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值