matlab实战系列之人工鱼群算法求解TSP问题原理解析(下篇源码解析)

本文介绍了人工鱼群算法在解决旅行商问题(TSP)中的应用,详细阐述了算法的基本概念,包括视野范围、k-距离邻域和多条鱼的中心,并解释了人工鱼如何通过觅食、聚群、追尾和随机行为进行寻优。文章还探讨了鱼群的主要行为,如觅食行为、聚群行为、追尾行为和移动策略,并给出了算法的流程图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从算法的名字中可以看出该算法是群体智能优化算法中的一种,人工鱼群算法通过模拟鱼群的觅食、聚群、追尾、随机等行为在搜索域中进行寻优。

人工鱼群算法有三个比较重要的概念:视野范围、k-距离邻域、多条鱼的中心。

 

一 | 基本概念

1 | 视野范围Visual

人工鱼群算法最重要的概念就是视野范围Visual,在定义视野范围之前大家需要明白两条鱼之间的“距离”是怎么计算的,如果是在二维平面上,那这个“距离”就是我们常规的欧式距离。

但如果用鱼群算法求解组合优化问题呢,这个“距离”如何定义呢?

以常见的TSP问题为例,如果城市数目为5,则两条鱼(每条鱼表示一条可行路径)可以分别表示为

1 2 3 4 5

3 2 4 1 5

那么TSP问题中两条鱼之间的“距离”为对应位置上不同元素数目之和,这两条鱼只有在第二个和第五个位置元素相同,即为2和5,其余三个位置元素都不相同,所以这两条鱼之间的“距离”为3。

 

用数学表达式表达的形式为:如果有n个城市,一条鱼表示成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值