为什么通常牛顿法比梯度下降法能更快的收敛

牛顿法通常比梯度下降法收敛更快,因为牛顿法采用二阶收敛,能更好地模拟局部曲面,从而选择更接近最优的下降路径。相比之下,梯度下降法仅考虑一阶信息,可能需要更多步才能到达最小值。通过用二次曲面拟合局部曲面,牛顿法在迭代中更能预测下一步的最优方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:为什么通常牛顿法比梯度下降法能更快的收敛?

解答:牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值