Java 对图片像素进行K-means聚类

本文介绍了使用K-means算法对图片像素进行聚类的方法,详细阐述了算法流程,并展示了从1到100的聚类效果。实验表明,当K值达到4时,图像聚类效果显著,且随着K值增加,图像细节逐渐丰富。此外,文章还讨论了这种方法在图片压缩和提升网页响应速度方面的潜在应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        聚类是机器学习中很重要的一部分,是一种无监督学习,本次选择K-means算法对图片的像素进行聚类

        K-means,顾名思义,K-均值,首先随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心。对剩余的每个对象根据其与各个簇中心的距离,将它赋给最近的簇,然后重新计算每个簇的平均值。这个过程不断重复,直到每个簇的中心确定不变。

    首先关注一下空间中每个点如何计算,普遍采用欧式距离,对于空间中两个点来说便是计算两个向量的欧式距离:

    通过每次计算每个点与中心点的距离,来确定每次K个类的中心,然后不断迭代直到K个中心不再变化为止。

    算法的优缺点还是比较多的,主要算法太经典太了,想知道更具体的请看Wiki上的解释把。

 

    接下来是实验部分了,实验主要对图片的像素聚类:

    对一张图片的像素点进行聚类,每个像素点是一个五维样本(x,y,r,g,b)进行聚类,其中x,y代表像素的位置,r,g,b分别代表个每个像素的图像特征RGB值。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值