如何阻止表单的默认提交事件

表单一点击提交按钮(submit)必然跳转页面,如果表单的action为空也会跳转到自己的页面,即效果为刷新当前页。
如下,可以看到一点击提交按钮,浏览器的刷新按钮闪了一下:

这里写图片描述

如果想要阻止表单的默认提交事件,有以下几种方法:

1.将<input>标签内按钮类型从type="submit"修改为type="button"

2.表单内的<button>未指定类型时,默认的类型为submit,可以显式的修改为<button type="button">来阻止表单提交

3.利用preventDefault()方法:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Document</title>
    <script>
        function func(event){
            event.preventDefault();
        }
    </script>
</head>
<body>
    <form action="">
        <input type="submit" value="button" onclick="func(event)" /> 
    </form>
</body>
</html>

4..用onclick点击事件来return false
讲一下表单提交按钮onclick事件:
onclick="return true" 为默认的表单提交事件
onclick="return false"为阻止表单提交事件
而一般用onclick来调用函数都是没有返回值的,所以一般调用完成后为默认return true;所以才会看到,先处理回调函数后再进行表单提交跳转。

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Document</title>
    <script>
        function func(){
            return false;
        }
    </script>
</head>
<body>
    <form action="">
        <input type="submit" value="button" onclick="return func()" /> 
        <!--注意是onclick内是return func();而不是简单的调用func()函数-->
    </form>
</body>
</html>

5.利用表单的onsubmit事件
注意:onsubmit事件的作用对象为<form>,所以把onsubmit事件加在提交按钮身上是没有效果的。
form对象的onsubmit事件类似onclick,都是先处理调用的函数,再进行表单是否跳转布尔值的判断
onsubmit="return true" 为默认的表单提交事件
onsubmit="return false"为阻止表单提交事件

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Document</title>
    <script>
        function func(){
            return false;
        }
    </script>
</head>
<body>
    <form action="" onsubmit="return func()">
        <input type="submit" value="button" /> 
    </form>
</body>
</html>
### 使用PINN(物理信息神经网络)解决偏微分方程的实例 #### 背景介绍 物理信息神经网络(Physics-Informed Neural Networks, PINNs)是一种结合深度学习与物理学知识的方法,能够高效求解复杂的偏微分方程(Partial Differential Equations, PDEs)。这种方法的核心在于将已知的物理规律作为约束条件嵌入到神经网络训练过程中,从而提高模型预测能力并减少对大量数据的需求。 以下是几个典型的PINN用于求解PDE的具体案例及其代码实现: --- #### 案例1:一维热传导方程 在一维空间中,热传导过程可以用如下形式表示: \[ u_t = \alpha u_{xx}, \quad x \in [a,b], t > 0, \] 其中 \(u(x,t)\) 表示温度分布,\(t\) 是时间变量,\(x\) 是位置坐标,而 \(\alpha\) 则代表材料的导热系数。边界条件可以设定为固定端点处的温度值或者绝热状态下的梯度零假设。 ##### 实现步骤 下面展示了一段基于PyTorch框架的一维热传导方程解决方案[^2]: ```python import torch import numpy as np # 定义神经网络结构 class Net(torch.nn.Module): def __init__(self, layers): super(Net, self).__init__() self.linears = torch.nn.ModuleList([torch.nn.Linear(layers[i], layers[i+1]) for i in range(len(layers)-1)]) def forward(self, x): a = x for i, l in enumerate(self.linears[:-1]): a = torch.tanh(l(a)) a = self.linears[-1](a) return a # 初始化参数 layers = [2, 20, 20, 1] # 输入维度 (x,t),隐藏层节点数,输出维度(u) model = Net(layers) def compute_loss(model, x_data, t_data, alpha=0.1): """定义损失函数""" xt = torch.cat((x_data.unsqueeze(-1), t_data.unsqueeze(-1)), dim=-1).requires_grad_(True) u_pred = model(xt) grad_u = torch.autograd.grad( outputs=u_pred.sum(), inputs=xt, create_graph=True)[0] u_x = grad_u[:, 0].view(-1, 1) u_t = grad_u[:, 1].view(-1, 1) hessian_xx = torch.autograd.grad(outputs=u_x, inputs=xt, retain_graph=True, create_graph=True)[0][:, 0].view(-1, 1) pde_residual = u_t - alpha * hessian_xx mse_pde = torch.mean(pde_residual ** 2) return mse_pde # 训练循环省略... ``` 上述代码片段展示了如何构建一个简单的全连接前馈神经网络,并通过自动微分技术计算目标函数相对于输入的空间二阶导数以及时间一阶导数,进而形成残差项以优化整个系统性能。 --- #### 案例2:Burgers' 方程 另一个经典例子是非线性的 Burgers’ 方程,在流体力学领域具有重要意义: \[ u_t + uu_x = \nu u_{xx}, \] 这里引入了粘滞效应因子 \(\nu>0\) 来描述扩散现象的影响程度。该类问题同样可以通过调整相应超参设置来适配不同场景需求[^1]。 --- #### 已验证的有效性分析 研究表明,相比于传统数值方法如有限元法或谱方法等,采用PINN不仅可以获得更高的精度而且还能显著降低运算成本特别是当面对高维情形时优势更加明显。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值