10、自然语言处理:问答相似性判断与命名实体识别

自然语言处理:问答相似性判断与命名实体识别

一、问答相似性判断

(一)模型介绍

1. Sentence-BERT(SBERT)

Sentence-BERT 是 BERT 针对句子的改进版本。在这个新模型中,将两个句子输入以获取嵌入表示,并在其基础上构建一个层,最后使用孪生网络(Siamese Networks)来计算句子之间的相似度。

以下是实现 SBERT 的代码:

#install SBERT
!pip install sentence-transformers
#import the SBERT
from sentence_transformers import SentenceTransformer
#let use paraphrase-MiniLM-L12-v2 pre trained model
sbert_model = SentenceTransformer('paraphrase-MiniLM-L12-v2')
x=[i for i in df.question]
#lets get embeddings for each question
sentence_embeddings_BERT= sbert_model.encode(x)
#lets see the shape
sentence_embeddings_BERT.shape

运行上述代码后,嵌入表示的形状为 (10000, 384),这意味着它生成了 384 维的嵌入。

2. GPT

GPT(Generativ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值