
轻松掌握数据结构与算法
文章平均质量分 92
Whoisbug
一线大厂技术骨干,曾主导多个大型分布式系统开发,涵盖电商交易、营销增长、社交互动等核心业务,在高并发场景下保障系统稳定运行,以精湛技术助力业务腾飞。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【轻松掌握数据结构与算法】其他杂项
在本系列文章的旅程中,我们深入探索了数据结构与算法的核心概念,从基础的变量和数据类型,到复杂的树、图、排序与搜索算法,再到算法设计技巧和复杂度分析。通过丰富的示例、问题与解决方案,我们不仅掌握了理论知识,更学会了如何将这些知识应用于实际编程和问题解决中。数据结构与算法是计算机科学的基石,它们为软件开发、系统设计和技术创新提供了坚实的基础。无论你是初学者,还是准备面试、参加竞赛,亦或是希望在技术领域进一步提升的开发者,这本书都为你提供了全面而深入的指导。原创 2025-01-21 00:05:36 · 247 阅读 · 0 评论 -
【轻松掌握数据结构与算法】复杂性类:理解算法的效率和可行性
复杂性类是理解算法效率和可行性的重要工具。通过了解不同复杂性类的定义和关系,你可以更好地选择和设计算法,解决实际问题。希望本文的示例和图表能帮助你更好地理解和掌握复杂性类。原创 2025-01-20 23:48:57 · 799 阅读 · 0 评论 -
【轻松掌握数据结构与算法】动态规划
动态规划和记忆化搜索是相辅相成的。分治法和动态规划的主要区别在于,分治法中的子问题是相互独立的,而在DP中子问题可能会重叠。通过使用记忆化搜索(维护一个已解决子问题的表格),动态规划将许多问题的指数级复杂度降低到多项式级复杂度(O(n²)、O(n³)等)。递归:递归地解决子问题。记忆化:将已计算的值存储在表格中(记忆化意味着缓存)。动态规划 = 递归 + 记忆化。原创 2025-01-20 23:41:59 · 1442 阅读 · 0 评论 -
【轻松掌握数据结构与算法】分治算法
分解:将问题分解为本身是同一类型问题的较小实例的子问题。递归:递归地解决这些子问题。合并:适当地组合它们的答案。分治法是一种通过递归地将问题分解成较小的子问题,解决这些子问题,然后合并它们的解来解决原问题的算法策略。原创 2025-01-19 23:44:20 · 997 阅读 · 0 评论 -
【轻松掌握数据结构与算法】贪心算法
贪心算法分阶段工作。在每个阶段,都会做出在该点看起来不错的决策,而不考虑未来的后果。通常,这意味着选择某种局部最优解。它假设局部最优选择也能构成全局最优解。贪心算法通过在每一步选择当前最优解,希望最终得到全局最优解,但并不总是有效。原创 2025-01-17 01:26:50 · 916 阅读 · 0 评论 -
【轻松掌握数据结构与算法】算法设计技巧
在前面的章节中,我们已经看到了许多用于解决不同类型问题的算法。在解决新问题之前,通常的做法是寻找当前问题与其他已解决问题之间的相似性。这有助于我们更容易地找到解决方案。在本章中,我们将探讨算法的不同分类方法,并在后续章节中重点介绍其中的几种(贪心算法、分治算法、动态规划)。原创 2025-01-17 00:51:28 · 936 阅读 · 0 评论 -
【轻松掌握数据结构与算法】字符串算法(String Algorithms)
字符串匹配算法是计算机科学中的一个重要领域,主要用于在文本中查找特定模式(子字符串)的出现位置。这些算法在文本编辑器、搜索引擎、生物信息学等领域有广泛的应用。字符串匹配算法在计算机科学中有广泛的应用。暴力法、Rabin-Karp 算法、有限自动机、KMP 算法和 Boyer-Moore 算法是几种常见的字符串匹配算法,每种算法都有其特定的用途和优缺点。此外,哈希表、二叉搜索树、字典树、三叉搜索树和后缀树是用于存储和处理字符串的常用数据结构。希望这些示例代码和输入输出能帮助您更好地理解和应用字符串算法。原创 2025-01-14 10:45:00 · 1246 阅读 · 0 评论 -
【轻松掌握数据结构与算法】哈希(Hashing)
哈希表是一种非常高效的数据结构,适用于快速查找、插入和删除操作。通过合理设计哈希函数和冲突解决策略,可以显著提高哈希表的性能。布隆过滤器则是一种空间高效的概率型数据结构,适用于测试元素是否属于某个集合。希望这些示例代码和输入输出能帮助您更好地理解和应用哈希技术。原创 2025-01-14 01:13:35 · 1172 阅读 · 0 评论 -
【轻松掌握数据结构与算法】符号表(Symbol Tables)
通过上述内容,我们可以看到符号表在编译器和解释器中的重要性,以及如何实现和使用符号表。希望本文能帮助你更好地理解和实现符号表。原创 2025-01-14 00:44:23 · 1443 阅读 · 0 评论 -
【轻松掌握数据结构与算法】选择算法(中位数)
选择算法的目标是在未排序的列表中找到第 k 小的元素。当 k 等于列表长度的一半时,这个问题就变成了寻找中位数的问题。选择算法在数据处理、统计分析以及各种优化问题中都有广泛的应用。通过上述分析和示例代码,我们可以看到选择算法在不同场景下的应用和优化方法。这些算法在实际数据处理中非常有用,能够帮助我们高效地找到所需的元素。原创 2025-01-14 00:13:52 · 942 阅读 · 0 评论 -
【轻松掌握数据结构与算法】搜索算法
搜索算法的目标是在给定的数据结构中找到一个特定的元素。搜索可以分为两类:无序搜索和有序搜索。无序搜索适用于未排序的数据,而有序搜索则适用于已排序的数据。本章详细介绍了多种搜索算法,包括线性搜索、二分搜索、插值搜索、符号表和哈希表、字符串搜索算法等。每种算法都有其适用场景和性能特点。通过理解这些算法的原理和实现,可以更好地选择合适的搜索算法来解决实际问题。原创 2025-01-13 23:01:09 · 851 阅读 · 0 评论 -
【轻松掌握数据结构与算法】图算法
通过以上对图算法的深入探讨,我们可以看到这些算法在计算机科学的各个领域都有着广泛的应用。无论是在算法设计、数据存储还是网络通信中,图算法都扮演着不可或缺的角色。希望这篇文章能帮助你更好地理解和应用这些强大的算法。原创 2025-01-12 15:13:32 · 802 阅读 · 0 评论 -
【轻松掌握数据结构与算法】不相交集合
不相交集合 ADT 是一种非常有用的数据结构,通过路径压缩和按秩合并,可以高效地处理集合的合并和查找操作。这种数据结构在图算法、网络流问题和并查集问题中非常有用。原创 2025-01-12 14:51:33 · 1028 阅读 · 0 评论 -
【轻松掌握数据结构与算法】优先队列和堆
优先队列是一种抽象数据类型,它支持在一组元素中插入元素,并且能够高效地删除具有最高优先级的元素。优先队列通常用于调度算法、事件驱动的模拟和图算法中。原创 2025-01-12 14:39:06 · 611 阅读 · 0 评论 -
【轻松掌握数据结构与算法】树的奥秘:从基础到高级应用
树是一种非线性的数据结构,它由节点组成,每个节点可以有多个子节点,但只有一个父节点。树的顶部节点称为根节点,它是树的起点。树的结构使得数据可以以层次化的方式进行组织和存储,这在很多实际应用中都非常有用,比如文件系统的目录结构、组织架构图等。原创 2025-01-12 14:28:46 · 978 阅读 · 0 评论 -
【轻松掌握数据结构与算法】队列:先进先出的数据结构
队列是一种灵活的数据结构,适用于需要先进先出操作的场景。通过理解队列的基本概念和操作,你可以更好地应用队列来解决实际问题。希望本文的示例和图表能帮助你更好地理解和掌握队列。原创 2025-01-12 01:35:37 · 704 阅读 · 0 评论 -
【轻松掌握数据结构与算法】栈:后进先出的数据结构
栈是一种灵活的数据结构,适用于需要动态大小和高效插入、删除操作的场景。通过理解栈的基本概念和操作,你可以更好地应用栈来解决实际问题。希望本文的示例和图表能帮助你更好地理解和掌握栈。希望这篇文章符合您的要求,如果您需要进一步的修改或添加图表,请告诉我。接下来,我会继续为您生成其他章节的技术博客文章。原创 2025-01-12 01:19:06 · 1136 阅读 · 0 评论 -
【轻松掌握数据结构与算法】链表:灵活的数据结构
链表是一种灵活的数据结构,适用于需要动态大小和高效插入、删除操作的场景。通过理解链表的基本概念和操作,你可以更好地应用链表来解决实际问题。希望本文的示例和图表能帮助你更好地理解和掌握链表。原创 2025-01-12 01:05:17 · 747 阅读 · 0 评论 -
【轻松掌握数据结构与算法】递归与回溯:解决复杂问题的利器
递归和回溯是解决复杂问题的有力工具。递归通过自我调用将问题分解为更小的子问题,回溯通过逐步探索所有可能的解决方案来找到可行的解。理解这两种技术并掌握它们的实现方法,将帮助你在数据结构与算法的学习中更上一层楼。原创 2025-01-12 00:58:11 · 934 阅读 · 0 评论