特征提取

 

在模式识别和图像处理领域中,特征提取是一种特殊的维数降阶的形式。

算法的输入数据太多而难以处理以及一些信息量很少的冗余数据,该方法转变该数据为降阶特征表示集,也称为特征向量。将输入数据转变为特征集的过程称为特征提取。 如果谨慎的选择提取的特征,特征集从输入数据中提取出相关信息,实现不使用全数据量输入的降阶表示。

 

In pattern recognition and in image processingFeature extraction is a special form of dimensionality reduction.

When the input data to an algorithm is too large to be processed and it is suspected to be notoriously redundant (much data, but not much information) then the input data will be transformed into a reduced representation set of features (also named features vector). Transforming the input data into the set of features is called features extraction. If the features extracted are carefully chosen it is expected that the features set will extract the relevant information from the input data in order to perform the desired task using this reduced representation instead of the full size input.

Contents

  [hide]

[edit]General

Feature extraction involves simplifying the amount of resources required to describe a large set of data accurately. When performing analysis of complex data one of the major problems stems from the number of variables involved. Analysis with a large number of variables generally requires a large amount of memory and computation power or a classification algorithm which overfits the training sample and generalizes poorly to new samples. Feature extraction is a general term for methods of constructing combinations of the variables to get around these problems while still describing the data with sufficient accuracy.

Best results are achieved when an expert constructs a set of application-dependent features. Nevertheless, if no such expert knowledge is available general dimensionality reduction techniques may help. These include:

[edit]Image processing

It can be used in the area of image processing which involves using algorithms to detect and isolate various desired portions or shapes (features) of a digitized image or video stream. It is particularly important in the area of Optical Character Recognition.

[edit]Low-level

[edit]Curvature

[edit]Image motion

[edit]Shape Based

  • Hough transform
    • Lines
    • Circles/Ellipse
    • Arbitrary shapes (Generalized Hough Transform)

[edit]Flexible methods

  • Deformable, parameterized shapes
  • Active contours (snakes)

[edit]References

[edit]See also

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值