Machine Learning(cross validation)来解决方差过大的问题

本文是作者学习李宏毅教授机器学习课程的心得笔记,探讨了机器学习中偏差与方差的问题。简单模型方差小、偏差大,复杂模型则反之。为平衡二者,文章提出通过交叉验证来寻找最佳模型,介绍了基本的训练-测试划分及更复杂的交叉验证方法,以减少特殊性影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

机器学习总结2(7月12日)

 

本文章是我在学习了台湾大学教授李宏毅的机器学习课程后,针对其中的要点做的学习笔记。文笔不够优雅,水平不够高深。感兴趣的博友们请移步李宏毅老师的youtube专栏:https://www.youtube.com/channel/UC2ggjtuuWvxrHHHiaDH1dlQ

或者在bilibili上观看网友搬运的视频:http://www.bilibili.com/video/av9770302/

 

我们通过机器学习得到的最优的模型,与真实的函数总是有一定的差别,即存在偏差(bias)与方差(variance)

假设x的平均值是µ,x的方差是σ2

 

通过做实验,我们可以了解到,简单的model,它的方差较小,偏差较大。

复杂的model,它的方差较大,偏差较小。

我们发现,方差和偏差的关系好像是互相排斥的,必须找到一个最好的中间值来得到最好的结果。

我们可以通过 交叉检验来解决这个方法(Cross Validation)

具体的做法是:将训练集分为两部分,一部分用来测试,一部分用来检验。然后将训练出来的模型在检验集中检验,寻找产生错误指数最小的那个模型

但是为了减少划分测试集合和检验集合时,可能会存在特殊性的可能,我们也可以是使用更复杂的交叉检验:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值