R-CNN(Regions with CNN features)

本篇论文是目标检测的开山之作,之后的大部分文章都是基于本篇论文进行修改和优化得到的产物。

之前的目标检测算法是穷举搜索(ExhaustiveSearch:使用一个窗口在图片上进行滑动,改变窗口的大小,继续扫描整张图像。通过寻找响应值最高的那个位置作为预测的目标。而本文是首先从图像中提取可能是物体的区域,然后对这些区域进行判断。这样的做的优点是过滤掉了一些无用的box ,节省了时间。

 

主要流程:

1.     对一张图片生成1k-2k个候选区域使用方法:selective research

2.     对每个候选区,使用CNN进行特征提取,使用分类器进行分类

3.     使用回归进行微小调整,使候选框的位置更为精确

 

一.Selective research

在图像中,同一个物体在尺度上有相似性,如颜色、纹理、尺度相似性等。本方法利用同一物体尺度范围的相似性,不断合并达到预定threshhold的相邻像素点

输入:RGB三通道的图片

输出:物体位置的可能结果L

  • 使用Efficient Graph-Based Image Segmentation的方法获得n个初始分割区域。
  • 初始化相似度集合S = 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值