目录
一、程序及算法内容介绍:
基本内容:
-
本代码基于Matlab平台编译,将:ALCPSO(学习因子异步化的粒子群优化算法)与RF(随机森林)相结合,进行多输入、多特征数据的分类预测
-
输入训练的数据包含12个特征,1个响应值,即通过12个输入值预测1个输出值(多变量、多输入分类预测,个数可自行指定)
-
通过ALCPSO算法优化随机森林中的:树个数、枝叶分叉树,这两个关键参数,提升预测的精度
-
数据输入程序后统一进行自动归一化处理,防止训练中出现过拟合
-
自动分析计算各个输入特征的:重要性、相关性图像,实现特征降维筛选(降维个数可自行选择),降低训练难度。
-
迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况
-
自动输出多种多样的的误差评价指标,自动输出大量实验效果图片
亮点与优势:
-
注释详细,几乎每一关键行都有注释说明,适合小白起步学习
-
直接运行Main函数即可看到所有结果,使用便捷
-
编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码
-
所有数据均采用Excel格式输入,替换数据方便,适合懒人选手
-
出图详细、丰富、美观,可直观查看运行效果
-
附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明
二、实际运行效果:
三、算法介绍:
学习因子异步化的粒子群优化算法(AsyLnCPSO)是一种改进的粒子群优化(PSO)算法,旨在提高优化效率和解的质量。该算法通过异步调整学习因子,使得个体学习因子和社会学习因子能够根据算法的进展和性能自适应地变化,从而增强了算法的灵活性和适应性。
学习因子的作用:
在PSO中,学习因子(通常用c1和c2表示)决定了粒子在搜索过程中对自身经验和群体经验的依赖程度。c1是个体学习因子,表示粒子对自身历史最佳位置的吸引力;c2是社会学习因子,表示粒子对群体最佳位置的吸引力。通过合理设置这两个因子,可以有效地平衡全局搜索和局部搜索的能力。
异步化的概念:
学习因子异步化的核心思想是根据粒子群的状态动态调整学习因子。传统的PSO算法中,学习因子是固定的,这可能导致算法在某些情况下过早收敛或搜索效率低下。通过异步调整学习因子,算法能够在不同的迭代阶段自适应地改变搜索策略,从而提高整体性能。