分治
一、分治的思想
- 分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);
- 治:将这些规模更小的子问题逐个击破;
- 合:将已解决的子问题逐层合并,最终得出原问题的解
二、分治法适用的情况
- 原问题的计算复杂度随着问题的规模的增加而增加。
- 原问题能够被分解成更小的子问题。
- 子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题。
- 原问题分解出的子问题的解可以合并为该问题的解。
三、相关练习
169. 多数元素
给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入: [3,2,3]
输出: 3
示例 2:
输入: [2,2,1,1,1,2,2]
输出: 2
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/majority-element
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
def majorityElement(nums)->int:
# 处理边界条件
# 数组中没有元素
if len(nums) == 0:
return
# 数组中只有一个元素
elif len(nums) == 1:
return nums[0]
# 数组中有多个元素
else:
# 递归,分割成多个子问题求解
# 每调用一次majorityElement函数,就进行一次二分
left = majorityElement(nums[:len(nums)//2])
right = majorityElement(nums[len(nums)//2:])
# 合并子问题求解
# 如果返回的left的众数和right的众数相等,则任意返回二者之一即为合并后的众数
if left == right:
return left
# 如果left的众数和right的众数不同,则判断两个众数在整个数组中出现的次数,取出现的次数多的那个
else:
if nums.count(left) > nums.count(right):
return left
else:
return right
a = [3,2,3]
b = majorityElement(a)
print("数组{}的众数是{}".format(a,b))
53. 最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
#coding=utf-8
'''
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
'''
'''
1. 分治法:确定切分的终止条件;准备数据,将大问题切分成小问题;处理子问题,得到子结果,并合并
时间复杂度:O(nlogn)
空间复杂度:O(1)
'''
def divide_conquer_maxSubArray(nums)->int:
#边界条件
if not nums:
return
if len(nums) == 1:
return nums[0]
#切分子问题
#第一种情况:左子数组的最大子序和
left = divide_conquer_maxSubArray(nums[:len(nums)//2])
#第二种情况:右子数组的最大子序和
right = divide_conquer_maxSubArray(nums[len(nums)//2:])
#第三种情况:最大子序和既包括左子数组中的元素,又包括右子数组中的元素,这种情况下,最大子数组一定包括左右分界线两边的元素
#对于左子数组,从右往左找最大子序和
# 设置左边最大和,初始值为左子数组中最右边的元素
max_left = nums[len(nums)//2 - 1]
# 记录左子数组的最大和
tmp_left = 0
# 从右往左找最大子序和
for i in range(len(nums)//2 - 1, -1, -1):
tmp_left += nums[i]
max_left = max(max_left, tmp_left)
#对于右子数组,从左往右找最大子序和
# 设置右边最大和,初始值为右子数组中最左边的元素
max_right = nums[len(nums) // 2]
# 记录右子数组的最大和
tmp_right = 0
# 从左往右找最大子序和
for i in range(len(nums)//2, len(nums)):
tmp_right += nums[i]
max_right = max(max_right,tmp_right)
#合并子问题
#返回三种情况中的最大值
return max(left,right,max_right+max_left)
'''
2. 贪心法:如果当前指针所指元素之前的和小于0,则丢弃当前元素之前的数列
时间复杂度:O(n)
空间复杂度:O(1)
'''
def greedy_maxSubArray(nums)->int:
#边界条件
if not nums:
return
#设置max和sum初值都为数组中的第一个元素
curr_sum = max_sum = nums[0]
for i in range(1, len(nums)):
curr_sum = max(nums[i], curr_sum+nums[i])
max_sum = max(curr_sum,max_sum)
return max_sum
'''
3. 动态规划:直接在原数组上进行运算,
如果nums[i-1]>0,则把它加到nums[i]上,如果nums[i-1]<=0,则nums[i]不变,最后返回nums[i]中最大的元素
'''
def DP_maxSubArray(nums)->int:
# 边界条件
if not nums:
return
# 如果nums[i-1]>0,则把它加到nums[i]上
# 如果nums[i-1]<=0,则nums[i]不变
# 最后返回nums[i]中最大的元素
for i in range(1,len(nums)):
if nums[i-1] > 0:
nums[i] += nums[i-1]
return max(nums)
a = [-2,1,-3,4,-1,2,1,-5,4]
print(divide_conquer_maxSubArray(a))
a = [-2,1,-3,4,-1,2,1,-5,4]
print(greedy_maxSubArray(a))
a = [-2,1,-3,4,-1,2,1,-5,4]
print(DP_maxSubArray(a))
50. Pow(x, n)
实现 pow(x, n) ,即计算 x 的 n 次幂函数。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25
说明:
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−231, 231 − 1] 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/powx-n
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
#coding=utf-8
'''
实现 pow(x, n) ,即计算 x 的 n 次幂函数。
'''
def myPow1(x,n)->float:
#处理n为负数的情况
if n < 0:
x = 1/x
n = -n
#确定边界条件
if n == 0:
return 1
#分割子问题
if n % 2 == 0:
sub = myPow1(x,n/2)
return sub*sub
if n % 2 == 1:
sub = myPow1(x,(n-1)/2)
return x*sub*sub
def myPow2(x,n)->float:
# 处理n为负数的情况
if n < 0:
x = 1 / x
n = -n
# 确定边界条件
if n == 0:
return 1
# 分割子问题
#如果n为奇数,先将原问题转化为1+偶数的情况
if n % 2 == 1:
p = myPow2(x,n-1)
return x*p
#返回偶数情况下的结果
return myPow2(x*x, n/2)
print(myPow1(2,10))
print(myPow2(2,10))