
线性代数
文章平均质量分 58
williamgavin
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
线性代数 -- 矩阵空间、秩1矩阵、小世界图
矩阵空间介绍一种新的向量空间:矩阵空间。 在这之前我们遇到的都是n维的向量空间, 对于矩阵空间先了解以下几个问题:Q:为什么矩阵也可以看成向量空间呢?A:因为矩阵可以同向量一样进行各种运算, 比如:加法, 数乘、线性组合等等; Q:矩阵空间与前面提到的实数向量空间有什么区别呢? A:矩阵空间是n*n维的, 而实数向量空间是n维的, 相当于从以前的n维扩展到n*n维。 下面我们以3*3具体谈谈矩阵空原创 2017-08-07 19:48:42 · 2225 阅读 · 0 评论 -
线性代数 -- 行列式及其性质
我们需要行列式的重要原因是:求特征值, 这点我会在后续的文章中介绍。 行列式一般记为detA, 或者写作 |A|, 意思是矩阵的行列式。 注意行列式是一个数。 一个包含很多信息的数, 比如:行列式为零时矩阵是奇异的(也就是没有逆矩阵); 除此之外, 行列式还包含很多其他的东西。 下面我主要从三个基本性质开始谈起。主要内容性质一:单位矩阵的行列式为 1。 即|I| = 1。性质二:任意交换行列式的两行原创 2017-09-05 08:49:02 · 2946 阅读 · 0 评论 -
线性代数 -- 投影矩阵和最小二乘
上一篇文章主要讲了子空间的投影, 其中一个主要的知识点是:投影矩阵, P = A(ATA)-1AT, 这个公式的作用就是投影, 比如P*b就是将向量b投影到距离它的列空间最近的位置;举两个极端的例子,如果向量b位于它自己的列空间中, 那么向量b在其列空间中的投影就是它自己, 即:Pb = b。如果向量b与它自己的列空间垂直, 那么向量b在其列空间中的投影就是0, 即:Pb = 0。 通常情况下原创 2017-08-26 18:12:00 · 20165 阅读 · 0 评论 -
线性代数 -- 正交矩阵和Gram-Schmidt正交化
今天来谈谈正交矩阵和Gram-Schmidt正交化。 先来看看正交矩阵正交矩阵在详细讨论正交矩阵之前, 我们先来看看正交向量。 假设q1, q2……qn 是一组正交向量, 那么每一个q向量都和其他的q向量正交(垂直)。 也就是说:如果一组向量中任一向量与除它自己之外的向量都正交, 那么就称这组向量是正交向量, 易知:qiTqj = 0(i != j)。 在上面那组向量中, 如果所有 q 向量的长度都原创 2017-09-04 21:08:08 · 3201 阅读 · 0 评论 -
线性代数 -- 子空间的投影(二)
前面已经讲过了一维, 这样主要谈谈高维(三维)。高维以三维为例。在三维空间中, 有一个有a1, a2确定的平面, 有不在平面中的b向量。 通过b向量做垂线交平面于p点, 将这个垂线记为向量e, e=b-p。 由前面可知, 该平面是某个矩阵的列空间, 这个矩阵是以a1,a2为列的一个矩阵, 因为只有这样才能保证列空间正好是这个平面。将这个矩阵记为A, 那么p=Ax。 所以e=b-Ax。 因为e=b-A原创 2017-08-26 11:45:22 · 2432 阅读 · 0 评论 -
矩阵的四个基本子空间
矩阵的四个基本子空间:列空间, 零空间, 行空间, A的转置零空间(左零空间)。要弄清楚两个基本问题:怎么知道这四个空间的一组基, 以及基的维数主要讨论对于矩阵Am*n来说, 它的四个基本子空间分别位于那些空间里面呢? 列空间位于:Rm零空间位于:Rn行空间位于:RmA的转置零空间(也叫作左零空间)位于:Rm如果矩阵为Am*n, 秩r=n, 那么列空间的一组基就是主列, 维数就是r。 列空间的维数与原创 2017-08-06 17:30:31 · 18865 阅读 · 2 评论 -
线性代数 -- 子空间的投影(一)
前言Q:为什么要讲投影?A:就像Ax=b有时会出现无解的情况, 但是我又要求出一个解来, 所以我就只能求一个最接近的解, 将Ax=b转化成Ax=P, P就是b在列空间上的投影。 但是记住此时的x并不是原来的x, 只是一个最接近x的解一维我们先来看下面这个一维空间投影的例子要求是在a向量中寻找距离b向量最近的点, 一个容易想到的做法就是通过b做投影, 投影是p点; 那么这个p点就是距离b最近的点, 连原创 2017-08-20 10:50:32 · 9638 阅读 · 9 评论 -
线性相关性、基、维数
这篇博客主要阐述一下这三个概念及其相关东西线性相关性Q:什么是线性相关性?A:对于x1, x2,……xn这一组向量, 除了零向量外, 不存在结果为零的组合, 则称这一个向量组线性无关; 反之, 则称为线性有关。通俗的说就是:c1x1 + c2x2 + c3x3 +……+cnxn = 0, 如果c1, c2……cn不全为零, 则为线性相关, 如果只有当c1,c2……cn全为零时才成立, 则称线性无关原创 2017-08-05 18:21:08 · 2036 阅读 · 0 评论 -
Ax=b
上一篇博客讨论了Ax=0的情况, 现在来看看Ax=b是怎样的假设A=, 那么如果A组成的方程组有解, b应该满足什么条件? 我们把b放到A矩阵后面去(得到A的增广矩阵), 然后化成阶梯型得到这个矩阵, 从这个矩阵很容易看出, 只有当b3=b2+b1时, 才有解。如果b有解, 哪么b应该是在A的空间之内也就是说b应该是A的线性组合。 从A矩阵可以看出 行三 = 行一 + 行二, 所以b应该也是这样。原创 2017-08-05 11:05:04 · 4538 阅读 · 0 评论 -
Ax=0
假设有A=矩阵, 要求Ax=b的所有x, 对A进行消元可得U=, 可以看出主元为1, 2。主元数量为2, 矩阵的秩为2。 介绍几个概念: 主列 - - 主元所在的列, 自由列 - - 除了主元所在的列之外的列 变量的个数等用于列的个数(此矩阵为x1, x2, x3, x4), 主变量是主元所在的列的变量(x1, x3), 自由变量是除了主元所在的列的变量。(x2, x4) 自由变量是回代时原创 2017-08-04 19:16:33 · 3290 阅读 · 0 评论 -
线性代数 -- 列空间、零空间
矩阵的列空间和零空间列空间关注的是使得Ax=b的成立的b, 零空间关注的是当b为零向量时的x的取值举个例子:列空间 A是如下矩阵 ⎡⎣⎢⎢⎢123411112345⎤⎦⎥⎥⎥ \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix} 因为A是三个三维向量, 不可能原创 2017-08-04 14:52:27 · 1784 阅读 · 2 评论 -
线性代数 -- 正交向量与子空间
什么是向量的正交?正交是垂直的另外一种说法, 两个向量正交就是说两个向量垂直怎么判断两个向量是否正交(条件)?可以通过做一个点乘来判断, XTy=0, 如果这个式子成立, 那么就说明x, y两个向量正交, 那么这个方法可以推广到n维吗? 可以为什么这个方法可以判断呢?如果三角形是直角三角形时, 有|x|2 + |y|2 = |(x+y)|2, 也就是xTx+yTy=(x+y)T(x+y), 由于XT原创 2017-08-17 18:29:09 · 1715 阅读 · 0 评论 -
图和网络
以下面这个图为例, 简单介绍一下图和网络上面这个图是一个电路图, 箭头方向表示的是电流的流向。 节点数 n 为:4; 边 m 为:5;①②③组成了一个回路(loop), ③④⑤ 也组成了一个回路, 对于一个图来说, 回路的数量和位置至关重要。我们可以用一个5*4的矩阵来描述一下这个图, 用来描述图的矩阵称为关联矩阵(关联矩阵的秩为节点数 - 1)。 可以根据电流的参考方向来判断正负。那么关联矩阵就可原创 2017-08-08 20:56:20 · 1636 阅读 · 0 评论 -
线性代数 -- 行列式公式和代数余子式
今天简单介绍求解行列式的两个公式, 先来看看第一个。首先以2*2行列式为例:这种方法求解的思想是:把行列式的每一行都化成若干个行列式相加, 一次化解一行, 行列式的结果保持不变(为什么?)。 将所有的行全部化完进行求值运算。再看看3*3行列式 思路:首先固定一行元素, 然后选取该行第一列的数, 再在其他行中选取其他列的数, 要求是每一行和每一列都只能有一个元素(每种选取情况都要考虑到)其他位置补0原创 2017-09-06 11:31:20 · 12396 阅读 · 1 评论