1.1 什么是Spark SQL
Spark SQL是用于结构化数据处理的Spark模块。与基本的Spark RDD API不同,Spark SQL提供的接口为Spark提供了有关数据结构和正在执行的计算的更多信息。在内部,Spark SQL使用这些额外的信息来执行额外的优化。与Spark SQL交互的方式有多种,包括SQL和Dataset API。计算结果时,使用相同的执行引擎,与您用于表达计算的API/语言无关。
1.2 为什么要有Spark SQL
1.3 SparkSQL的发展
1)发展历史
RDD(Spark1.0)=》Dataframe(Spark1.3)=》Dataset(Spark1.6)
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同的是他们的执行效率和执行方式。在现在的版本中,dataSet性能最好,已经成为了唯一使用的接口。其中Dataframe已经在底层被看做是特殊泛型的DataSet<Row>。
2)三者的共性
(1)RDD、DataFrame、DataSet全都是Spark平台下的分布式弹性数据集,为处理超大型数据提供便利。
(2)三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action行动算子如foreach时,三者才会开始遍历运算。
(3)三者有许多共同的函数,如filter,排序等。
(4)三者都会根据Spark的内存情况自动缓存运算。
(5)三者都有分区的概念。
1.4 Spark SQL的特点
1)易整合
无缝的整合了SQL查询和Spark编程。
2)统一的数据访问方式
使用相同的方式连接不同的数据源。
3)兼容Hive
在已有的仓库上直接运行SQL或者HQL。
4)标准的数据连接
通过JDBC或者ODBC来连接。