3 线性神经网络(上):理论知识
# 2022.10.5
包括3.1、3.4部分内容
3.1 线性回归
特别说明:标识习惯与别书习惯正好相反
- 第
i
个样本:x(i)x^{(i)}x(i) - 第
i
个样本第j
个特征:xj(i)x^{(i)}_jxj(i)
回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。
在机器学习领域中的大多数任务通常都与预测(prediction)有关。 当我们想预测一个数值时,就会涉及到回归问题
3.1.1 线性模型
这里李沐老师标识没有统一,我做了修改
① 一个数据集:
y^=wTx+b\hat{y}=w^Tx+by^=wTx+b
即,
y^=w1x1+...+wdxd+b\hat{y}=w_1x_1+...+w_dx_d+by^=w1x1+...+wdxd+b
- 这里面
d
为特征 ,x=[x1,...,xd]T:d×1x=[x_1,...,x_d]^T: d\times 1x=[x1,...,xd