python 服从正太分布 离散情况 下 的概率密度函数
-
scipy.stats库是分布函数库, 包含正太分布,泊松分布,卡方分布等
-
导入scipy.stats库以后, 应用函数norm生成服从正太分布的概率密度函数,
具体法是: scipy.stats.norm(均值, 标准差) -
应用函数rvs()产生服从正太分布的随机样本; 具体用法是: scipy.stats.rvs(样本个数)
-
概率密度函数pdf() 用于求出某样本发生的概率; 具体用法是: pdf(样本), 结果为样本发生的概率
-
累积密度函数cdf()是概率密度函数的积分。
可用于算出正太分布曲线任意两点a,b(b>a)围成的区间的面积, 即面积等于随机数发生在这区间的概率(密度);用法:面积=scipy.stats.norm.cdf(b)-scipy.stats.norm.cdf(a) ; 这是使用累积分布函数cdf算出来的
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats # 导入分布函数库; 另一种导入形式 import scipy.stats
import pandas as pd
import seaborn as sns
import matplotlib
matplotlib.rcParams['axes.unicode_minus']=False#解决保存图像时负号'-'显示为方块的问题
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
# 正太分布曲线关于 x轴=均值 处对称; 即 x轴=均值时,结果为峰值(最大概率)
# 标准差越大,则分峰值越小(即最大概率越小),曲线越陡
nd = stats.norm(