python ols做线性回归模型

线性回归: y = β₁x + β₂; python求解系数β₁, β₂; 以及用P值判断该模型是否可靠,
ols(‘因变量1 ~ 自变量2’,data = ‘变量数据来源’).fit(); fit()表示拟合

import os
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib

os.chdir(r'D:\pycharm程序文件\练习1')
data = pd.read_csv('creditcard_exp.csv',skipinitialspace=True) # skipinitialspace=True 用于方差分析

matplotlib.rcParams['axes.unicode_minus']=False#解决保存图像时负号'-'显示为方块的问题
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体

data_two = data[['Income','avg_exp']].copy()

# 先看一下散点图
def scatter_fig():
    x = data_two['avg_exp']
    y = data_two['Income']
    plt.scatter(x, y)
    plt.xticks(rotation=45)
    plt.show()


# 做线性回归: y = β₁x + β₂;  ols('因变量1 ~ 自变量2',data = '变量数据来源').fit(); fit()表示拟合
from statsmodels.formula.api import ols

linear_regression = ols(' avg_exp ~ Income ',data=data).fit(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值