线性回归: y = β₁x + β₂; python求解系数β₁, β₂; 以及用P值判断该模型是否可靠,
ols(‘因变量1 ~ 自变量2’,data = ‘变量数据来源’).fit(); fit()表示拟合
import os
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
os.chdir(r'D:\pycharm程序文件\练习1')
data = pd.read_csv('creditcard_exp.csv',skipinitialspace=True) # skipinitialspace=True 用于方差分析
matplotlib.rcParams['axes.unicode_minus']=False#解决保存图像时负号'-'显示为方块的问题
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
data_two = data[['Income','avg_exp']].copy()
# 先看一下散点图
def scatter_fig():
x = data_two['avg_exp']
y = data_two['Income']
plt.scatter(x, y)
plt.xticks(rotation=45)
plt.show()
# 做线性回归: y = β₁x + β₂; ols('因变量1 ~ 自变量2',data = '变量数据来源').fit(); fit()表示拟合
from statsmodels.formula.api import ols
linear_regression = ols(' avg_exp ~ Income ',data=data).fit(