本节课你将学到
- 理解为什么选择Python做AI开发
- 成功安装Anaconda开发环境
- 学会使用conda管理Python包
- 搭建一个完整的AI开发环境
- 运行你的第一个AI程序
开始之前
为什么学Python?
想象一下,如果编程语言是工具箱:
- C语言就像手工工具,功能强大但使用复杂
- Java就像电动工具,标准化但较为繁琐
- Python就像瑞士军刀,简单好用,AI开发必备
Python在AI领域如此受欢迎的原因:
- 语法简单:接近自然语言,容易学习
- 库丰富:有现成的AI工具包,不用重复造轮子
- 社区活跃:遇到问题容易找到解决方案
- 行业标准:90%的AI项目都在用Python
环境要求
- 操作系统:Windows 10/11、macOS 10.14+、或 Ubuntu 18.04+
- 硬盘空间:至少5GB可用空间
- 内存:建议8GB以上(4GB也能用,但会较慢)
- 网络:能够访问互联网(下载安装包)
核心概念
什么是Anaconda?
把Python想象成一辆车,那么:
- 纯Python:只有发动机的车,需要自己装轮子、座椅、方向盘
- Anaconda:整车出厂,Python + 常用库 + 开发工具都配好了
Anaconda是Python的"全家桶"版本,包含:
- Python解释器:运行Python代码的核心引擎
- Jupyter Notebook:交互式编程环境(下节课详细讲)
- 常用库:NumPy、Pandas、Matplotlib等(后面课程会用到)
- 包管理器conda:安装和管理Python包的工具
什么是conda?
conda就像手机的应用商店:
- 安装软件:
conda install 包名
= 在应用商店下载APP - 卸载软件:
conda remove 包名
= 删除APP - 查看已安装:
conda list
= 查看手机里的APP列表 - 创建环境:为不同项目创建独立的"手机"(避免冲突)
安装实战
第一步:下载Anaconda
- 打开浏览器,访问:https://www.anaconda.com/download
- 选择你的操作系统(Windows/macOS/Linux)
- 下载Python 3.11版本(约500MB,耐心等待)
# 下载完成后,你会得到一个安装文件:
# Windows: Anaconda3-2023.xx-Windows-x86_64.exe
# macOS: Anaconda3-2023.xx-MacOSX-x86_64.pkg
# Linux: Anaconda3-2023.xx-Linux-x86_64.sh
第二步:安装Anaconda
Windows用户:
- 双击下载的.exe文件
- 点击"Next"开始安装
- 重要:选择"Add Anaconda to my PATH environment variable"(添加到系统路径)
- 等待安装完成(约10-15分钟)
macOS用户:
- 双击下载的.pkg文件
- 按照向导完成安装
- 安装完成后,重启终端
Linux用户:
# 在终端中运行
bash Anaconda3-2023.xx-Linux-x86_64.sh
# 按回车阅读许可协议,输入yes同意
# 选择安装路径(默认即可)
# 询问是否初始化conda时,输入yes
第三步:验证安装
打开命令行工具:
- Windows:按Win+R,输入
cmd
,回车 - macOS:按Cmd+空格,输入
terminal
,回车 - Linux:按Ctrl+Alt+T
输入以下命令验证:
# 检查Python版本
python --version
# 应该显示:Python 3.11.x
# 检查conda版本
conda --version
# 应该显示:conda 23.x.x
# 检查已安装的包
conda list
# 应该显示很多已安装的包
⚠️ 如果出现"conda不是内部或外部命令"错误:
- 重启电脑
- 重新打开命令行
- 如果还是不行,需要手动添加环境变量(见常见问题解答)
环境管理实战
创建AI开发环境
为什么要创建独立环境?就像给不同项目准备不同的工具箱:
- 基础环境:放常用工具,不轻易改动
- AI项目环境:专门放AI相关的库,可以随意实验
# 创建名为'ai-learning'的新环境,Python版本3.11
conda create --name ai-learning python=3.11
# 激活环境(切换到这个工具箱)
conda activate ai-learning
# 确认当前环境
conda info --envs
# 会显示所有环境,当前环境前面有*号
安装常用AI库
# 确保在ai-learning环境中
conda activate ai-learning
# 安装数据处理库
conda install numpy pandas matplotlib
# 安装机器学习库
conda install scikit-learn
# 安装Jupyter Notebook(下节课会用)
conda install jupyter
# 验证安装
python -c "import numpy, pandas, matplotlib, sklearn; print('所有库安装成功!')"
完整项目:第一个AI程序
让我们用刚安装的环境运行一个简单的AI程序:
创建项目文件夹
# 创建项目文件夹
mkdir my_first_ai_project
cd my_first_ai_project
# 创建Python文件
# Windows用户可以用记事本,macOS/Linux用户可以用任何文本编辑器
编写代码
创建一个名为hello_ai.py
的文件,输入以下代码:
# hello_ai.py - 我的第一个AI程序
# 这个程序使用机器学习来识别鸢尾花的品种
# 导入必要的库
import numpy as np # 数值计算库
from sklearn import datasets # 机器学习数据集
from sklearn.model_selection import train_test_split # 数据分割工具
from sklearn.neighbors import KNeighborsClassifier # K近邻分类器
from sklearn.metrics import accuracy_score # 准确率计算
print("🎉 欢迎来到AI世界!")
print("=" * 50)
# 第1步:加载数据
# iris是经典的机器学习数据集,包含3种鸢尾花的特征数据
print("📊 正在加载鸢尾花数据集...")
iris = datasets.load_iris()
X = iris.data # 特征数据(花瓣长度、宽度等)
y = iris.target # 标签数据(花的品种)
print(f"数据集大小:{X.shape[0]}个样本,{X.shape[1]}个特征")
print(f"花的品种:{iris.target_names}")
# 第2步:分割数据
# 把数据分成训练集和测试集,就像考试前练习和正式考试
print("\n🔀 正在分割数据集...")
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42 # 20%用于测试
)
print(f"训练集:{len(X_train)}个样本")
print(f"测试集:{len(X_test)}个样本")
# 第3步:创建并训练AI模型
print("\n🧠 正在训练AI模型...")
# 使用K近邻算法,就像"物以类聚,人以群分"
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train) # 让模型学习训练数据
print("模型训练完成!")
# 第4步:测试模型
print("\n🎯 正在测试模型性能...")
predictions = model.predict(X_test) # 让模型预测测试数据
accuracy = accuracy_score(y_test, predictions) # 计算准确率
print(f"模型准确率:{accuracy:.2%}")
# 第5步:实际预测演示
print("\n🔮 让我们用AI预测一朵新花的品种...")
# 这是一朵新花的特征数据 [花萼长度, 花萼宽度, 花瓣长度, 花瓣宽度]
new_flower = np.array([[5.1, 3.5, 1.4, 0.2]])
predicted_species = model.predict(new_flower)
predicted_name = iris.target_names[predicted_species[0]]
print(f"花的特征:花萼长{new_flower[0][0]}cm,宽{new_flower[0][1]}cm")
print(f" 花瓣长{new_flower[0][2]}cm,宽{new_flower[0][3]}cm")
print(f"AI预测结果:这是一朵 {predicted_name} 🌸")
print("\n🎉 恭喜!你已经成功运行了第一个AI程序!")
print("=" * 50)
运行程序
# 确保在正确的环境中
conda activate ai-learning
# 运行程序
python hello_ai.py
预期运行效果
运行成功后,你将看到类似这样的输出:
🎉 欢迎来到AI世界!
==================================================
📊 正在加载鸢尾花数据集...
数据集大小:150个样本,4个特征
花的品种:['setosa' 'versicolor' 'virginica']
🔀 正在分割数据集...
训练集:120个样本
测试集:30个样本
🧠 正在训练AI模型...
模型训练完成!
🎯 正在测试模型性能...
模型准确率:100.00%
🔮 让我们用AI预测一朵新花的品种...
花的特征:花萼长5.1cm,宽3.5cm
花瓣长1.4cm,宽0.2cm
AI预测结果:这是一朵 setosa 🌸
🎉 恭喜!你已经成功运行了第一个AI程序!
==================================================
⭐太棒了!你刚刚:
- 成功搭建了AI开发环境
- 加载并处理了真实的机器学习数据
- 训练了一个AI模型
- 用AI模型进行了预测
- 获得了100%的准确率!
常见问题解答
Q1: 安装Anaconda时提示空间不足
原因: Anaconda需要约3-5GB空间
解决方法:
# 清理磁盘空间,或选择其他磁盘安装
# Windows: 在安装时选择其他驱动器
# macOS/Linux: 指定安装路径
Q2: conda命令找不到
原因: 环境变量未正确设置
解决方法:
# Windows解决方案:
# 1. 右键"此电脑" → 属性 → 高级系统设置 → 环境变量
# 2. 在Path中添加:C:\Users\你的用户名\anaconda3\Scripts
# 3. 重启命令行
# macOS/Linux解决方案:
echo 'export PATH="~/anaconda3/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc
Q3: 运行程序时出现ModuleNotFoundError
原因: 没有激活正确的conda环境
解决方法:
# 激活AI学习环境
conda activate ai-learning
# 重新安装缺失的包
conda install 缺失的包名
Q4: 程序运行缓慢
原因: 电脑配置较低或后台程序过多
解决方法:
- 关闭不必要的程序
- 重启电脑后再运行
- 如果是老电脑,这是正常现象,耐心等待
Q5: 想卸载重装怎么办?
# 卸载Anaconda
# Windows: 控制面板 → 卸载程序 → 找到Anaconda卸载
# macOS: 删除~/anaconda3文件夹
# Linux: rm -rf ~/anaconda3
# 然后重新按步骤安装
环境管理小贴士
常用conda命令速查
# 环境管理
conda create --name 环境名 python=3.11 # 创建环境
conda activate 环境名 # 激活环境
conda deactivate # 退出当前环境
conda env list # 查看所有环境
conda remove --name 环境名 --all # 删除环境
# 包管理
conda install 包名 # 安装包
conda remove 包名 # 卸载包
conda list # 查看已安装包
conda update 包名 # 更新包
conda search 包名 # 搜索包
保持环境整洁的建议
- 为每个项目创建独立环境:避免包冲突
- 定期清理不用的环境:节省磁盘空间
- 记录重要环境的包列表:便于重建环境
# 导出环境配置
conda env export > environment.yml
# 从配置文件创建环境
conda env create -f environment.yml
下节课预告
第2讲我们将学习Jupyter Notebook的使用,这是AI开发者最喜欢的编程环境:
- 像写文档一样写代码
- 代码和结果可以保存在一起
- 支持图表、图片的直接显示
- 是数据科学家的必备工具
准备好在更友好的环境中继续我们的AI学习之旅吧!
⭐恭喜完成第1讲!
你已经成功迈出了AI学习的第一步,拥有了一个完整的Python AI开发环境。记住,万丈高楼平地起,扎实的基础是成功的关键!