- 博客(17439)
- 资源 (971)
- 问答 (2)
- 收藏
- 关注

原创 布客沉思录(一):【历史垃圾时间】就是彻头彻尾的伪概念
所以新的方向之一必须是能从市场上直接赚到钱的,对于程序员来讲,我们没有什么时间,但我们有自动化能力,有AI能力,所以最好的方式就是量化交易。《单干》一书中提到,最好的商业方式必须离钱最近,必须变现环节最小,轻资产大于重资产,自动大于手动,这样才能降低不可控性,那么量化交易一定是最符合这个描述的了。就算当时赚不到钱,也算是技术储备,等待经济好了,就一定能发挥作用。看到了吧,这个伪概念就是个自证预言:如果你觉得现在是【历史垃圾时间】,你放弃了自己的主观能动性,啥都不做,当然啥都不出错,但是啥都做不出来。
2024-08-14 14:43:16
3434
23

原创 【布客】已经制作完成的有声书
【超越想象的GPT医疗:第六章:延展大问题:如何让数学、编码和逻辑更可靠】【超越想象的GPT医疗:第二章:智能协作,GPT-4在医学中的超强潜力】【超越想象的GPT医疗:结语:欣赏AI的奇迹,人类智慧和无尽雄心的见证】【超越想象的GPT医疗:第一章:“达芬奇3”,与GPT-4的初次接触】【超越想象的GPT医疗:第九章:安全第一,在新的AI时代充分受益】【超越想象的GPT医疗:第三章:一个大问题:AI能“理解”吗】【超越想象的GPT医疗:引言:GPT-4医生的故事】
2024-08-10 13:16:08
1352
21

原创 布客社区及饱和式翻译计划 Q&A
A1:如果你现在,在AIGC大爆发之后问我这个问题,我只想告诉你们,翻译是 AIGC 中一种重要的形式,输出稳定,没有幻觉,比什么扩写仿写之类的好多了。当然我也尝试过很多其他的AIGC形式,比如源码解析、课程笔记之类的,但都没有翻译方便省事。翻译一定是未来几年技术自媒体 AIGC 的主流形态。
2024-08-06 13:52:20
974
13

原创 Quant文艺复兴计划正式启动!
此时此刻恰如彼时彼刻,所以我深知,如果我不自己动手写出一批教程,中文互联网就永远没有面向新手的开放教程可用。幸好现在我们有了ChatGPT,它减轻了我的主业工作量,让我有时间投入这个方面;同时,它也大大减轻了编写教程的工作量,能让这些想法迅速实现。再者,良好的量化实现是保证回测准度和自动化的前提之一。总结paperwithbacktest上的Quant前沿论文【自动】,解析代码【自动】寻找gh上的机器学习或深度学习的Quant代码,做源码解析【自动】挑选主流量化框架,翻译文档【自动】,做源码解析【自动】
2024-04-10 22:56:08
1032
60

原创 赚钱周报、风向标、大航海 23&24
龙哥赚钱周报 23在线阅读龙哥赚钱周报 202301-02龙哥赚钱周报 202303龙哥赚钱周报 202304龙哥赚钱周报 202305龙哥赚钱周报 202306龙哥赚钱周报 202307龙哥赚钱周报 202308龙哥赚钱周报 202309龙哥赚钱周报 202310龙哥赚钱周报 202311龙哥赚钱周报 202312龙哥风向标 23在线阅读龙哥风向标 202301龙哥风向标 202302龙哥风向标 202303龙哥风向标 202304龙哥风向标 202305龙哥
2024-04-09 12:03:53
2839

原创 一些用 GPT 翻译的计算机科学/人工智能 PDF 讲义
3D成像.pdf3D成像.pdf3D成像技术.pdf3D成像技术.pdf3D点云分析.pdf3D点云分析.pdfAAAI 2019 笔记.pdfAAAI 2019 笔记.pdfCMU 10.708 概率图模型讲义.pdfCMU 10.708 概率图模型讲义.pdfCMU 15-312 编程语言基础讲义.pdfCMU 15-312 编程语言基础讲义.pdfCMU 15-411 编译器设计讲义.pdfCMU 15-411 编译器设计讲义.pdfCMU 15-819 同伦类型论讲义.
2024-02-20 22:59:55
2223
原创 数据科学的统计学(二)
在本章中,我们提供了统计正则化的解释,并使用示例数据进行了演示,以便更好地理解统计正则化。之后,我们讨论了如何通过正则化来改进数据或数据模型的多种方法。最后,我们看到了 R 语言如何很好地支持正则化的概念和方法。在下一章,我们将介绍数据模型评估的概念,并使用统计学进行评估。我们将比较数据评估和数据质量保证的概念,最后,应用统计评估的思想,并通过 R 语言对数据进行评估。在本章中,我们定义了评估,并且考察了评估与统计评估之间的相似性和差异。
2025-07-21 01:34:33
2456
原创 数据科学的统计学(一)
统计学是数据科学领域任何任务的绝对必要先决条件,但对于进入数据科学领域的开发人员来说,可能也是最令人生畏的障碍。本书将带你踏上从几乎一无所知到能够熟练使用各种统计方法处理典型数据科学任务的统计之旅。本书适合那些有数据开发背景的人员,他们有兴趣可能进入数据科学领域,并希望通过富有洞察力的程序和简单的解释获得关于统计学的简明信息。只需带上你的数据开发经验和开放的心态!本书适合那些有兴趣进入数据科学领域,并希望通过富有洞察力的程序和简单的解释获得关于统计学的简明信息的开发人员。在本书中,你会发现一些文本样式,用来
2025-07-21 01:34:02
2840
原创 Spark 数据科学(三)
在大数据时代,非结构化数据的激增让人不堪重负。存在多种方法(如数据挖掘、自然语言处理(NLP)、信息检索等)来分析非结构化数据。由于各行各业中非结构化数据的快速增长,具备可扩展性的解决方案已经成为当务之急。Apache Spark 配备了现成的文本分析算法,同时也支持自定义开发默认不提供的算法。在上一章中,我们展示了如何通过 SparkR(一个为 R 程序员提供的 Spark R API)利用 Spark 的强大功能,而无需学习一门新语言。在这一章中,我们将进入一个全新的维度,探索利用 Spark 从非结构
2025-07-21 01:24:47
768
原创 Spark 数据科学(二)
我们每天都在使用机器学习,无论我们是否注意到。像 Google 这样的电子邮件服务提供商会自动将一些来信推送到文件夹,像 Amazon 这样的在线购物网站或 Facebook 这样的社交网络网站会推荐一些意外有用的商品或信息。那么,是什么让这些软件产品能够重新连接久未联系的朋友呢?这些只是机器学习应用的几个例子。从形式上来说,机器学习是人工智能(AI)的一部分,它涉及一类能够从数据中学习并进行预测的算法。其技术和基本概念来自统计学领域。机器学习位于计算机科学和统计学的交叉点,被认为是数据科学最重要的组成部分
2025-07-21 00:08:15
2689
原创 Spark 数据科学(一)
在这个智能时代,数据分析是保持和促进商业增长的关键。每个企业都在努力最大限度地利用其数据,采用各种数据科学工具和技术,在分析成熟度曲线上不断前进。数据科学需求的突然增加是数据科学家稀缺的明显原因。要满足市场对既精通统计学、机器学习、数学建模又具备编程能力的独角兽数据科学家的需求,实属不易。独角兽数据科学家的可用性将随着市场需求的增加而减少,并且这种情况将持续下去。因此,迫切需要一种解决方案,不仅能够让独角兽数据科学家做得更多,还能创造出 Gartner 所称的“公民数据科学家”。公民数据科学家不是其他人,而
2025-07-20 23:46:34
1050
原创 Scala 和 Spark 大数据分析(八)
Python 是最受欢迎的通用编程语言之一,具有多种用于数据处理和机器学习任务的激动人心的特性。为了在 Python 中使用 Spark,最初开发了 PySpark 作为 Python 到 Apache Spark 的轻量级前端,并利用 Spark 的分布式计算引擎。在本章中,我们将讨论在 Python IDE 中(如 PyCharm)使用 Spark 的一些技术细节。许多数据科学家使用 Python,因为它拥有丰富的数值库,专注于统计、机器学习或优化。
2025-07-20 23:46:00
1047
原创 Scala 和 Spark 大数据分析(七)
“竖琴手把 90%的时间花在调弦上,只有 10%的时间是在演奏不和谐的音乐。”在本章中,我们将深入探讨 Apache Spark 的内部机制,看到尽管 Spark 让我们感觉就像在使用另一个 Scala 集合,但我们不能忘记 Spark 实际上运行在一个分布式系统中。因此,需要额外的注意。简而言之,本章将涵盖以下主题:监控 Spark 作业Spark 配置Spark 应用程序开发中的常见错误优化技巧Spark 提供了 Web UI,用于监控在计算节点(驱动程序或执行器)上运行或已完成的所有作业。在本节中,我
2025-07-20 23:45:14
976
原创 Scala 和 Spark 大数据分析(六)
贝叶斯推理是一种基于贝叶斯定理的统计方法。它用于更新假设的概率(作为强有力的统计证据),以便统计模型能够不断更新,朝着更准确的学习方向发展。换句话说,所有类型的不确定性都以统计概率的形式在贝叶斯推理方法中揭示出来。这是理论和数学统计中的一个重要技术。我们将在后续章节中广泛讨论贝叶斯定理。此外,贝叶斯更新在数据集序列的增量学习和动态分析中占据主导地位。例如,时间序列分析、生物医学数据分析中的基因组测序、科学、工程、哲学和法律等领域广泛应用贝叶斯推理。从哲学视角和决策理论看,贝叶斯推理与预测概率密切相关。
2025-07-20 23:44:37
1020
原创 Scala 和 Spark 大数据分析(五)
“技术使得大规模人口成为可能;而大规模人口现在使得技术变得不可或缺。”在这一章中,我们将学习如何使用图形模型(并解决)许多现实世界的问题。我们看到 Apache Spark 有自己的图形库,你在学习 RDD 时学到的内容在这里也能派上用场(这次作为顶点和边的 RDD)。简而言之,本章将涵盖以下主题:图论简要介绍GraphXVertexRDD 和 EdgeRDD图形操作符Pregel APIPageRank为了更好地理解图形,让我们来看一下 Facebook 以及你通常如何使用 Facebook。每天你使用智
2025-07-20 23:43:39
630
原创 Scala 和 Spark 大数据分析(四)
“一台机器可以做五十个普通人能做的工作,但没有一台机器能做一个非凡人能做的工作。”在本章中,你将学习如何使用 Spark 来分析结构化数据(如需将无结构数据,比如包含任意文本或其他格式的文档,转换为结构化形式);我们将看到 DataFrames/datasets 在这里是基础,Spark SQL 的 API 如何使查询结构化数据既简单又强大。此外,我们还会介绍 datasets,并探讨 datasets、DataFrames 和 RDDs 之间的区别。总的来说,本章将涵盖以下主题:Spark SQL 和 D
2025-07-20 23:42:58
642
原创 Scala 和 Spark 大数据分析(三)
对于正确问题的近似答案,比对于近似问题的精确答案更有价值。在本章中,你将学习数据分析和大数据;我们将看到大数据带来的挑战以及如何应对这些挑战。你将学习分布式计算以及函数式编程提出的方法;我们将介绍 Google 的 MapReduce、Apache Hadoop,最后是 Apache Spark,并展示它们如何采纳这些方法和技术。简而言之,本章将涵盖以下主题:数据分析简介大数据简介使用 Apache Hadoop 的分布式计算Apache Spark 来了数据分析是应用定性和定量技术来检查数据的过程,目的是
2025-07-20 23:42:11
1057
原创 Scala 和 Spark 大数据分析(二)
在计算机科学中,函数式编程(FP)是一种编程范式,它是一种构建计算机程序结构和元素的独特风格。这种独特性有助于将计算视为数学函数的求值,避免了状态变化和可变数据。因此,通过使用 FP 概念,你可以学习如何以确保数据不可变的方式编写代码。换句话说,FP 是编写纯函数的编程方法,是尽可能去除隐式输入和输出,使得我们的代码尽可能只是描述输入与输出之间的关系。这并不是一个新概念,但λ演算(Lambda Calculus),它为函数式编程提供了基础,最早是在 1930 年代提出的。
2025-07-20 23:41:16
591
原创 Scala 和 Spark 大数据分析(一)
数据的持续增长与需要在这些数据上做出日益复杂决策的需求正在带来巨大的挑战,阻碍了组织通过传统分析方法及时获取洞察力。大数据领域已与这些框架紧密相关,其范围由这些框架能处理的内容来定义。无论你是在分析数百万访客的点击流以优化在线广告投放,还是在筛查数十亿笔交易以识别欺诈迹象,对于高级分析(如机器学习和图形处理)的需求——从大量数据中自动获取洞察力——比以往任何时候都更加迫切。
2025-07-20 23:39:53
712
原创 Python 数据科学秘籍(五)
在本章中,我们将看到更多基于树的算法的袋装方法。由于它们对噪声的鲁棒性以及对各种问题的普适性,它们在数据科学社区中非常受欢迎。大多数这些方法的名声在于它们相比其他方法能够在没有任何数据准备的情况下获得非常好的结果,而且它们可以作为黑盒工具交给软件工程师使用。除了前文提到的过高的要求外,还有一些其他优点。从设计上看,袋装法非常适合并行化。因此,这些方法可以轻松应用于集群环境中的大规模数据集。决策树算法在树的每一层将输入数据划分为不同的区域。因此,它们执行了隐式的特征选择。
2025-07-20 23:38:57
1012
原创 Python 数据科学秘籍(四)
在本章中,我们将介绍以下几种方法:使用回归预测实值学习带 L2 收缩的回归——岭回归学习带 L1 收缩的回归——LASSO使用交叉验证迭代器与 L1 和 L2 收缩在本章中,我们将介绍回归技术及其在 Python 中的实现方法。接着,我们将讨论回归方法固有的一些缺点,并探讨如何通过收缩方法来解决这些问题。收缩方法中需要设置一些参数。我们将讨论交叉验证技术,以找到收缩方法的最佳参数值。在上一章中,我们讨论了分类问题。在本章中,让我们将注意力转向回归问题。在分类问题中,响应变量要么是二元的,要么是一组离散值(在
2025-07-20 23:38:12
819
原创 Python 数据科学秘籍(三)
本章我们将主要关注无监督数据挖掘算法。我们将从涵盖各种距离度量的食谱开始。理解距离度量和不同的空间在构建数据科学应用程序时至关重要。任何数据集通常都是一组属于特定空间的对象。我们可以将空间定义为从中抽取数据集中的点的点集。最常见的空间是欧几里得空间。在欧几里得空间中,点是实数向量。向量的长度表示维度的数量。接下来,我们将介绍一个食谱,介绍核方法。核方法是机器学习中一个非常重要的主题。它们帮助我们通过线性方法解决非线性数据问题。我们将介绍核技巧的概念。接下来,我们将介绍一些聚类算法的食谱。
2025-07-20 23:37:28
835
原创 Python 数据科学秘籍(二)
在你开始任何数据科学应用之前,长期来看,深入了解你即将处理的数据总是很有帮助的。对底层数据的理解将帮助你为当前问题选择正确的算法。以不同粒度级别探索数据的过程叫做探索性数据分析EDA在许多情况下,EDA能够揭示通常通过数据挖掘算法发现的模式。EDA帮助我们理解数据特征,并为你提供适当的指导,以便选择适合当前问题的算法。本章将详细介绍EDA。我们将探讨用于有效执行EDA操作的实践技巧和工具。数据预处理和转换是另外两个重要的过程,它们能够提高数据科学模型的质量,并增加数据科学项目的成功率。
2025-07-20 23:36:54
1019
原创 Python 数据科学秘籍(一)
如今,我们生活在一个万物互联的世界里,海量数据不断生成,而人类无法对所有数据进行分析并作出决策。人类的决策越来越多地被计算机做出的决策所替代,这得益于数据科学领域。数据科学深刻渗透到我们互联的世界中,市场上对那些不仅能彻底理解数据科学算法,还能编程实现这些算法的人才需求日益增长。数据科学是一个交叉学科的领域,涉及数据挖掘、机器学习、统计学等多个方面。这给各级数据科学家带来了巨大压力——无论是那些渴望成为数据科学家的人,还是目前已经从事这一领域的实践者。
2025-07-20 23:36:22
1050
原创 Python 数据分析第三版(五)
在本章中,我们重点讲解了如何在基础数据科学 Python 库(如 pandas、Numpy 和 scikit-learn)上执行并行计算。Dask 为 DataFrame 和数组提供了完整的抽象,可以在单核/多核机器或集群中的多个节点上处理中等规模的数据集。我们从本章开始时,先了解了 Dask 的数据类型,如 DataFrame、数组和 Bag。接着,我们重点介绍了 Dask Delayed、预处理以及在并行环境下的机器学习算法。这是本书的最后一章,意味着我们的学习旅程到此为止。
2025-07-20 23:35:45
860
原创 Python 数据分析第三版(四)
在本章中,我们探讨了无监督学习及其技术,如降维和聚类。主要内容包括 PCA(主成分分析)降维技术以及几种聚类方法,如 k-means 聚类、层次聚类、DBSCAN 和谱聚类。本章从降维和 PCA 开始,PCA 之后,我们的主要焦点是聚类技术及如何确定聚类的数量。在后续章节中,我们介绍了聚类性能评估指标,如 DBI 和轮廓系数,这些是内部评估指标。接着,我们又探讨了外部评估指标,如 Rand 得分、Jaccard 得分、F-Measure 和 Fowlkes-Mallows 指数。下一章,第十二章,
2025-07-20 23:35:06
888
原创 Python 数据分析第三版(三)
在本章中,我们探讨了使用 Python 进行数据预处理和特征工程。这帮助你获得了数据分析中重要的技能。本章的主要重点是清理和过滤脏数据。我们从 EDA(探索性数据分析)开始,讨论了数据过滤、处理缺失值和异常值。之后,我们重点介绍了特征工程任务,如数据变换、特征编码、特征缩放和特征分割。接着,我们探索了可以用于特征工程的各种方法和技术。在下一章,第八章,信号处理与时间序列,我们将重点讨论信号处理和时间序列数据在 Python 中的重要性。
2025-07-20 23:33:05
649
原创 Python 数据分析第三版(二)
线性代数和统计学是任何数据分析活动的基础。统计学帮助我们获得初步的描述性理解,并从数据中做出推断。在上一章中,我们已经理解了数据分析的描述性和推断性统计度量。另一方面,线性代数是数据专业人员的核心基础之一。线性代数对于处理向量和矩阵非常有用。大多数数据以向量或矩阵的形式存在。深入理解线性代数有助于数据分析师和数据科学家理解机器学习和深度学习算法的工作流程,使他们能够根据业务需求灵活地设计和修改算法。例如,如果你想使用主成分分析(PCA),你必须了解特征值和特征向量的基础知识;或者如果你想开发一个推荐系统,你
2025-07-20 23:31:47
753
原创 Python 数据分析第三版(一)
第一章,开始使用 Python 库,解释了数据分析过程以及 Python 库和 Anaconda 的成功安装。此外,我们还将讨论 Jupyter Notebook 及其高级功能。第二章,NumPy 与 Pandas,介绍了 NumPy 和 Pandas。本章提供了 NumPy 数组、Pandas DataFrame 及其相关函数的基本概述。第三章,统计学,简要概述了描述性统计和推断性统计。第四章,线性代数,简要概述了线性代数及其相关的 NumPy 和 SciPy 函数。第五章,
2025-07-20 23:30:06
656
原创 大数据分析实践指南(三)
在本章中,我们讨论了部署企业级数据科学基础设施的需求,包括软件和硬件层面。我们分享了关于此类举措的管理层常见问题。接下来是关于在大公司中用于数据挖掘和机器学习的关键企业解决方案的广泛介绍。本教程介绍了在亚马逊网络服务(AWS,一种基于云的系统)上启动 RStudio Server。AWS 已成为目前全球领先的云服务提供商,本次演示展示了如何在几秒钟内启动整个虚拟机。文中提到了关于谨慎且合理使用 AWS 以防止高额费用的优缺点。
2025-07-20 23:28:12
756
原创 大数据分析实践指南(二)
在本章中,我们阅读了关于 Spark 的一些核心特性,Spark 是当今大数据领域最突出的一项技术之一。自 2014 年推出以来,Spark 迅速成熟,成为一种大数据解决方案,缓解了 Hadoop 的许多不足之处,如 I/O 争用等问题。今天,Spark 拥有多个组件,包括专门用于流式分析和机器学习的组件,并且正在积极开发中。Databricks 是 Spark 商业支持版本的领先提供商,还提供了一个非常方便的基于云的 Spark 环境,任何用户都可以免费访问,尽管资源有限。
2025-07-20 23:26:18
1063
原创 大数据分析实践指南(一)
本书向读者介绍了与企业中使用的大数据相关的广泛主题。大数据是一个广阔的领域,涵盖了技术、统计学、可视化、商业智能以及许多其他相关学科的元素。为了从那些通常因体积或技术限制而无法访问的数据中获得真正的价值,企业必须在软件和硬件层面上都利用合适的工具。为此,本书不仅涵盖了大数据的理论和实践方面,还补充了高阶话题,例如大数据在企业中的应用、大数据和数据科学计划,以及关键考虑事项,如资源、硬件/软件堆栈和其他相关主题。这些讨论对于计划实施或升级组织的大数据和/或数据科学平台的 IT 部门将非常有用。本书重点关注三个
2025-07-20 23:25:07
1318
原创 数据科学管理指南(二)
在这一章中,我们探讨了创新,并学习了如何管理它们。良好的创新管理要求我们仔细规划自己的活动,并利用销售、市场营销和技术领导等不同的视角,将我们的创意与市场需求对接。首先,我们描述了每个视角如何有助于有效的创新管理。接下来,我们探讨了将创新融入大型组织和初创公司的复杂性。数据科学对于大多数组织来说是一项创新活动,我们定义了几种策略,可以用来找到项目创意并使其成功实施。我们还考察了三个案例研究,每个案例都与创新管理的不同主题相关。第一个案例是在 MedVision 跟随创新周期。
2025-07-20 22:28:59
1139
原创 数据科学管理指南(一)
在深入探讨围绕机器学习算法构建系统的管理问题之前,我们需要先了解数据科学本身。数据科学和机器学习背后的主要概念是什么?如何构建和测试模型?在这个过程中常见的陷阱有哪些?有哪些类型的模型?我们可以通过机器学习解决哪些任务?本节包含以下章节:第一章,数据科学可以做什么第二章,测试你的模型第三章,理解人工智能媒体和新闻将人工智能作为任何与数据分析相关的技术的替代流行词。事实上,人工智能是计算机科学和数学的一个子领域。
2025-07-20 22:28:27
597
原创 Jupyter5 学习指南(三)
随着用户界面组件处理的提取,用户现在可以为他们的实现定制完全独立的前端。所有入口点都有文档记录,用户可以按需执行必要的步骤。在这一章节中,我们学习了如何暴露 Notebook,以便多个用户可以同时使用一个 Notebook。我们看到出现错误的例子,安装了一个解决此问题的 Jupyter 服务器,并且使用 Docker 来缓解该问题。
2025-07-20 22:27:56
600
原创 Jupyter5 学习指南(二)
JavaScript 是一种高级、动态、无类型并且解释型的编程语言。许多基于 JavaScript 的衍生语言应运而生。对于 Jupyter 来说,底层的 JavaScript 实际上是 Node.js。Node.js 是一个基于事件的框架,使用 JavaScript,可以用于开发大型可扩展的应用程序。需要注意的是,这与本书前面介绍的主要用于数据分析的语言不同(虽然 Python 也是一种通用语言,但它有着明确的数据分析能力)。在本章中,我们将涵盖以下主题:向 Jupyter 添加 JavaScript 包
2025-07-20 22:27:16
803
原创 Jupyter5 学习指南(一)
学习 Jupyter 讨论了如何使用 Jupyter 记录脚本并生成数据分析项目的结果。Jupyter 让数据科学家能够记录完整的分析过程,类似于其他科学家使用实验室笔记本记录测试、进展、结果和结论的方式。Jupyter 支持多种操作系统,本书将介绍在 Windows 和 macOS 中使用 Jupyter,以及满足您特定需求所需的各种步骤。通过添加语言引擎,Jupyter 支持多种脚本语言,使用户能够以原生方式使用特定的脚本。本书是为那些希望以自然编程的方式向他人展示软件解决方案的读者编写的。Jupyte
2025-07-20 22:06:19
814
原创 Jupyter 数据科学(二)
好的,前面的步骤告诉我们一些关于单个球员的信息。总有一种说法,X 队总是比其他队更强。那么如果我们能按团队获得击球率并进行比较呢?那么,历史上最强的队伍是谁呢?我们可以通过队伍的击球率对数据进行排序(我不确定 CNU 队是什么,我猜它是一个早期的芝加哥队。其他队伍可以识别为费城、多伦多和波士顿。我们可以使用之前为球员击球表现使用过的quantile与前面的表格相比,我们可以看到只有两个队伍(在 130 个队伍中)位于顶尖表现组(大约是 1%的水平)。
2025-07-20 22:05:47
774
公司的自建邮件服务器投不进 163,显示“451 DT:SPM”
2020-02-19
imagemagick 从 png 转换的 pdf 太大了
2020-02-19
TA创建的收藏夹 TA关注的收藏夹
TA关注的人