学习opencv3第五章练习6——分离图像

该博客介绍了一段使用OpenCV进行图像处理的代码,包括读取图像、提取绿色通道、克隆图像、查找绿色平面的最小值和最大值、设置阈值、创建掩码图像以及进行像素减法操作。主要展示了如何通过比较和阈值处理来标识和突出显示图像中的绿色部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.找到并显示绿图
2.克隆这个绿图
3.找出这个绿平面的最小值的最大值
4.将clone1的所以元素赋值为tresh = (uchar)((最大值- 最小值) / 2.0);
5.将clone2所有元素赋值为0,然后用compare(green_image,clone1,clone2,CMP_GE)。现在clone2为标识绿图中值超过thresh的掩码图像图像
6.最后,使用subtract(greenImg, tresh / 2, greenImg, clone2)并显示结果
#include <opencv2/opencv.hpp>
#include

using namespace std;
using namespace cv;

int main()
{
Mat clone1, clone2;
double g_l, g_h;
Mat src = imread(“D:/opencv练习/picture/logo.jpg”);
Mat greenImg(src.cols, src.rows, CV_8UC1);
Mat channels[3];//创建三通道
split(src, channels);//通道分离
imshow(“绿图”, channels[1]);
greenImg = channels[1];
greenImg.copyTo(clone1);
greenImg.copyTo(clone2);
minMaxLoc(greenImg, &g_l, &g_h, NULL, NULL);
cout << “最小值为” << g_l << endl;
cout << “最小值为” << g_h << endl;
double tresh = (uchar)((g_h - g_l) / 2.0);
for (int i=0;i<clone1.rows;i++)
{
for (int j=0;j<clone1.cols;j++)
{
clone1.at( i, j) = tresh;
}
}
for (int i = 0; i < clone2.rows; i++)
{
for (int j = 0; j < clone2.cols; j++)
{
clone2.at(i, j) = 0;
}
}
compare(greenImg, clone1, clone2, CMP_GE);//将greenImg与clone1作比较,相同的为1,不相同的为0,存入clone2
subtract(greenImg, tresh / 2, greenImg, clone2);//clone2为标识绿图中值超过thresh的掩码图像图像
imshow(“最终图”, greenImg);
waitKey(0);
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值