出处:Proceedings of the 23rd IEEE International Conference on Image Processing (ICIP 2016) 2016
一、摘要
本文提出了一种实用的多目标跟踪方法,其主要关注点是为在线和实时应用程序有效地关联对象。为此,检测质量被认为是影响跟踪性能的关键因素,改变检测器可以提高跟踪性能,最高可达18.9%。尽管将大家熟悉的卡尔曼滤波和匈牙利算法的基本组合跟踪组件,该方法实现了与现有最先进跟踪技术相当的精度。但是,由于我们跟踪方法的简化,跟踪器能以260Hz的速率做更新,比其他先进跟踪器快了20倍。
关键词:计算机视觉、多目标跟踪、检测、数据关联
二、介绍
2.1 论文介绍
针对**多目标跟踪(MOT)**问题,本文提出了一种检测跟踪框架,其中目标检测每帧并表示为边界框。与许多基于批处理的跟踪方法相比[1,2,3],这项工作主要针对在线跟踪,其中只有来自前一帧和当前帧的检测被呈现给跟踪器。
MOT问题可以看作是一个数据关联问题,其目标是关联检测跨帧视频序列。为了辅助数据关联过程,跟踪器使用各种方法对场景中物体的运动[1,4]和外观[5,3]进行建模。本文采用的方法是通过建立在视觉MOT benchmark上的观测结果上的。首先,有很多较为成熟的数据关联技术,如多假设跟踪( MHT)和联合概率数据关联(JPDA)占据了很多MOT benchmark的前几名。其次,唯一没有使用聚合通道滤波(ACF)检测器也是排名靠前的跟踪器,其检测