tensorflow自动求导机制

本文深入探讨了TensorFlow中的可训练变量,包括如何创建和使用它们,以及`trainable`和`ResourceVariable`的区别。此外,详细介绍了自动求导机制,如GradientTape的工作原理,以及如何处理persistent参数和watch_accessed_variables参数。同时,讲解了多元函数的偏导数计算及高阶导数和向量求导的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 可训练变量

1.1 可训练变量简述

 

 

1.2 将张量封装成可训练变量

 1.2使用可训练变量

 1.3 trainable 和ResourceVariable

 1.4可训练变量赋值

 1.5isinstance

 判断属性 

 2.自动求导

2.1自动求导-GradientTape

 2.2 GradientTape的persistent参数

GradientTape的persistent参数默认为false,代表着tape这个对象只能使用一次,因此会出现报错!

 

 解决方法:加上参数persistent为true

  2.3 GradientTape的watch_accessed_variables参数

GradientTape的watch_accessed_variables参数表示自动监视所有的可训练变量,取值是布尔类型,默认为true

设置为false后输出导数为none

 2.3.1 添加监视的可训练变量

 2.3.2 添加监视的非可训练变量

 2.4多元函数求偏导

2.4.1两个变量接收

2.4.2 一个变量接收偏导

 

 

 

  2.5高阶导数

2.6对向量求偏导

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值