创建开发机
创建一个使用10%GPU算力,cuda12.2系统的开发机,并启动。由于开发机的IO性能较差,开发机共享盘中已经创建好了本次实验所需要的conda环境
# 启动共享的conda环境
conda activate /root/share/pre_envs/icamp3_demo
部署cli模型
创建目录
创建一个目录用于存放代码
mkdir -p /root/demo
touch /root/demo/cli_demo.py
编写代码
代码的主要逻辑是使用transformers加载共享目录下的internlm2-chat-1_8b模型
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# 模型地址
model_name_or_path = '/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b'
# 创建tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0') # 运行在第0块显卡上
# 创建大语言模型
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, device_map=