Python解决0/1背包和完全背包问题

本文介绍了动态规划在解决背包问题中的应用,详细解析了0/1背包问题和完全背包问题。通过实例分析了背包的回推过程,并提供了Python实现代码,帮助理解如何利用Python求解这两种背包问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总述:

在解决背包问题前,需要了解的是动态规划的思想,背包问题是最典型的动态规划应用。

一、0/1背包问题

0/1背包的关键在于每个物品都只有两个状态:装和不装。

例如,某0/1背包问题为,n=5,w={2,2,6,5,4},v={6,3,5,4,6},W=10。求背包能装下的最大价值。

分析:

背包的回推过程非常关键,在接下来的实例中会详细阐述。

其中i表示物品序号,r表示背包的剩余容量。

先将f(i,0)和f(0,r)均置为0,其求解f的过程如下:

省略i=3,4,5

可以列出如下图表:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值