机器学习-(三)在线图片识别+摄像头捕捉图片识别

本文介绍了如何使用ML5.js进行在线图片识别,包括通过按钮或拖拽上传图片的识别方法,以及如何利用摄像头进行实时识别。在实施过程中,强调了项目需在Apache服务器环境下运行,并提供了Apache24的安装步骤,包括下载、配置、安装和启动服务器的过程,以及解决可能遇到的端口占用问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用ML5.js进行在线图片识别,需要在Apache服务器上运行。(Apache server安装教程附后)

一、利用按钮或者拖拽的方式,对上传的图片进行识别。

index.html 的代码如下,引入了链接:<script src="https://unpkg.com/[email protected]/dist/ml5.min.js"></script> 

<!DOCTYPE html>
<html lang="">

<head>
  <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Getting Started with ml5.js</title> 
  <style>
    body {
      padding: 0;
      margin: 0;
    }
  </style>
  <script src="https://unpkg.com/[email protected]/dist/ml5.min.js"></script> 

  <script src="../p5.js"></script>
  <script src="../addons/p5.sound.min.js"></script>
  <script src="sketch.js"></script>
</head>

<body>
</body>

</html>

sketch.js代码:

let img;
let classifier;
let flag1 = 0;
let flag2 = 0;
//let firsttime = 0;

//图片预处理后再进行显示
function ImageReady() {
    image(img, 0, 0, width, height);
    flag1 = 1;
    if (flag2 == 1) {
        classifier.predict(img, GetResult);
    }
}

function ModelReady() {
    console.log("Model is ready!"); // 模型准备完成后才能进行预测
    //classifier.predict(img,GetResult);
    flag2 = 1;
    if (flag1==1){
    	classifier.p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值