机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)
一个高斯混合模型(Gaussian Mixture Models, GMM)是一个概率模型,它假设数据来自由若干个未知的高斯(正态)分布组成的混合分布。
sklearn.mixture
包能够学习高斯混合模型(Gaussian Mixture Models, GMM), 从GMM抽样,确定适合的成分数。Scikit-learn执行不同的类估计GMM, 对应不同的估计策略。
高斯混合
GaussianMixture
对象执行EM(expectation-maximization)算法拟合GMM. GaussianMixture.fit
方法从数据学习一个GMM. 给定检验数据,使用GaussianMixture.predict方法给每个样本分派它最可能属于的高斯分布。
GaussianMixture提供不同的选项约束不同估计类的协方差结构:spherical, diagonal, tied or full covariance.
GaussianMixture类的利弊
GaussianMixture类的利:
-
速度:它是学习混合模型最快的算法。
-
中立:因为它仅仅最大化似然函数,所以不会使均值偏向0,也不会使成分数偏向形成特定的结构。
GaussianMixture类的弊:
-
奇性:当对每个混合没有足够多的数据点时,很难估计它的协方差结构。
-
成分数