根据已有安装的cuda配置合适的pytorch环境

本文介绍了如何在Windows系统中查询CUDA版本,通过nvidia-smi和nvcc--version命令,以及在已有环境基础上创建新虚拟环境并安装PyTorch的步骤,确保兼容性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前网络上根据电脑配置安装合适的深度学习环境的帖子已经很多了,但是现实中会出现很久之前已经安装了对应的cuda,但是现在忘记了当时安装的是什么版本。本文针对这一问题展开攻略。

1 cuda安装版本查询

我们在查询自己应该安装什么版本的cuda时,一般是:
管理员运行windows powershell,然后输入命令:

nvidia-smi

在这里插入图片描述

之后根据显示的cuda版本,选择一个不大于显示版本号的cuda版本进行安装。因此,我们可以知道:nvidia-smi显示出的cuda版本仅仅只是本电脑的显卡驱动所支持的最高版本cuda。原先电脑上已有的cuda版本要通过该命令查询:

nvcc --version

在这里插入图片描述

2 虚拟环境创建

安装新的pytorch环境前创建一个新的虚拟环境,这里使用conda创建

conda create -n py38
conda activate py38

3pytroch安装

pytorch官网
接下来,在上述链接中选择对于cuda版本的pytorch安装命令,然后在anaconda cmd中的对应虚拟环境粘贴运行即可。
这里建议使用pip。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值