使用 PoseNet 和实时深度学习项目进行姿势检测

本文介绍了使用 PoseNet 进行实时姿势检测的技术,包括 PoseNet 的工作原理、现实世界应用以及如何使用 P5.js 和 ML5.js 在浏览器中实现项目。 PoseNet 是一个基于 TensorFlow 的模型,能够在图像或视频中检测人体姿势,常用于社交媒体、健身应用和虚拟游戏等领域。文章详细讲解了如何使用 javascript 和相关库创建一个姿势检测项目,从创建 HTML 和 javascript 文件到导入 P5.js 和 ML5.js,再到加载模型、捕获图像和绘制骨架。最后,文章提到了项目部署和未来可能的拓展方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

深度学习是机器学习和人工智能的一个子集,它模仿人类获取某些类型知识的方式。它本质上是一个具有三层或更多层的神经网络。深度学习有助于解决许多人工智能应用程序,这些应用程序有助于提高自动化程度,在无需人工干预的情况下执行分析和物理任务,从而创建智能的应用程序和技术。其中一种应用是人体姿势检测,其中使用了深度学习。

c359637ba6b0c34890a5b1eb4a5be1ad.png

目录

  • 什么是Posenet ?

  • PoseNet 是如何工作的?

  • 实时姿势检测的应用

  • 使用 PoseNet 实现姿势检测

    • 先决条件

    • 从头开始编写完整的项目

    • 在 GitHub 上部署

  • 尾注

什么是Posenet ?

Posenet 是一种实时姿势检测技术,你可以使用它检测图像或视频中的人类姿势。它在两种情况下都可以作为单模式(单个人体姿势检测)和多姿势检测(多个人体姿势检测)工作。

简单来说,Posenet 是一个深度学习 TensorFlow 模型,它允许你通过检测肘部、臀部、手腕、膝盖、脚踝等身体部位来估计人体姿势,并通过连接这些点形成姿势的骨架结构。

PoseNet 是如何工作的?

PoseNet 接受过 MobileNet 架构训练。MobileNet 是谷歌开发的卷积神经网络,在 ImageNet 数据集上训练,主要用于类别中的图像分类和目标估计。它是一个轻量级模型,它使用深度可分离卷积来加深网络并减少参数、计算成本并提高准确性。你可以在 google 上找到大量与 MobileNet 相关的文章。

预训练模型在浏览器中运行,这就是 posenet 与其他依赖API 的库的区别。因此,在笔记本电脑/台式机中配置有限的任何人都可以轻松使用此类模型并构建良好的项目。

Posenet 为我们提供了总共 17 个我们可以使用的关键点,从眼睛到耳朵,再到膝盖和脚踝。

e538ae1fff0743b504f941e12c67512b.png

如果我们提供给 Posenet 的图像不清晰,则posenet 会以JSON 响应的形式显示它对检测特定姿势的置信度分数。

PoseNet 现实世界中的应用

  1. 在 Snapchat 过滤器中使用,你可以在其中看到舌头、侧面、快照、虚拟人脸等。

  2. 像 cult 一样的健身应用程序,用于检测你的运动姿势。

  3. 一个非常受欢迎的 Instagram Reels 使用姿势检测为你的脸和周围提供不同的特征。

4)虚拟游戏来分析球员的投篮。

使用 PoseNet 实现姿势检测

现在我们有了对posenet的理论知识以及为什么使用它。

让我们直接进入编码环境并实现姿势检测项目。

我们将如何实施项目

我们不会遵循 Python 的方式来实现这个项目,而是会使用 javascript,因为我们必须在浏览器中完成所有这些工作,而在浏览器中实现 Python 几乎是不可能的。

你可以在服务器上运行 Python。Tensorflow 有一个流行的库名称tensorflow.js,它提供了在客户端系统上运行模型的功能。

如果你还没有阅读或了解使用 javascript 进行机器学习,那么无需担心,代码量很少。

让我们开始吧

你可以使用任何 IDE 来实现项目,例如 Visual Studio 代码、sublime 文本等。

1) Boiler 模板

创建一个新文件夹并创建一个 HTML 文件,它将作为我们的网站供用户使用。

在这里我们将导入我们将使用的 javascript 文件、机器学习和深度学习库。

<html>
    <head>
        <title>PoseNet Detection</title>
    </head>
    <body>
。支持yolov5s,yolov5m,yolov5l.zip目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSDRetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值