介绍
深度学习是机器学习和人工智能的一个子集,它模仿人类获取某些类型知识的方式。它本质上是一个具有三层或更多层的神经网络。深度学习有助于解决许多人工智能应用程序,这些应用程序有助于提高自动化程度,在无需人工干预的情况下执行分析和物理任务,从而创建智能的应用程序和技术。其中一种应用是人体姿势检测,其中使用了深度学习。
目录
什么是Posenet ?
PoseNet 是如何工作的?
实时姿势检测的应用
使用 PoseNet 实现姿势检测
先决条件
从头开始编写完整的项目
在 GitHub 上部署
尾注
什么是Posenet ?
Posenet 是一种实时姿势检测技术,你可以使用它检测图像或视频中的人类姿势。它在两种情况下都可以作为单模式(单个人体姿势检测)和多姿势检测(多个人体姿势检测)工作。
简单来说,Posenet 是一个深度学习 TensorFlow 模型,它允许你通过检测肘部、臀部、手腕、膝盖、脚踝等身体部位来估计人体姿势,并通过连接这些点形成姿势的骨架结构。
PoseNet 是如何工作的?
PoseNet 接受过 MobileNet 架构训练。MobileNet 是谷歌开发的卷积神经网络,在 ImageNet 数据集上训练,主要用于类别中的图像分类和目标估计。它是一个轻量级模型,它使用深度可分离卷积来加深网络并减少参数、计算成本并提高准确性。你可以在 google 上找到大量与 MobileNet 相关的文章。
预训练模型在浏览器中运行,这就是 posenet 与其他依赖API 的库的区别。因此,在笔记本电脑/台式机中配置有限的任何人都可以轻松使用此类模型并构建良好的项目。
Posenet 为我们提供了总共 17 个我们可以使用的关键点,从眼睛到耳朵,再到膝盖和脚踝。
如果我们提供给 Posenet 的图像不清晰,则posenet 会以JSON 响应的形式显示它对检测特定姿势的置信度分数。
PoseNet 现实世界中的应用
在 Snapchat 过滤器中使用,你可以在其中看到舌头、侧面、快照、虚拟人脸等。
像 cult 一样的健身应用程序,用于检测你的运动姿势。
一个非常受欢迎的 Instagram Reels 使用姿势检测为你的脸和周围提供不同的特征。
4)虚拟游戏来分析球员的投篮。
使用 PoseNet 实现姿势检测
现在我们有了对posenet的理论知识以及为什么使用它。
让我们直接进入编码环境并实现姿势检测项目。
我们将如何实施项目
我们不会遵循 Python 的方式来实现这个项目,而是会使用 javascript,因为我们必须在浏览器中完成所有这些工作,而在浏览器中实现 Python 几乎是不可能的。
你可以在服务器上运行 Python。Tensorflow 有一个流行的库名称tensorflow.js,它提供了在客户端系统上运行模型的功能。
如果你还没有阅读或了解使用 javascript 进行机器学习,那么无需担心,代码量很少。
让我们开始吧
你可以使用任何 IDE 来实现项目,例如 Visual Studio 代码、sublime 文本等。
1) Boiler 模板
创建一个新文件夹并创建一个 HTML 文件,它将作为我们的网站供用户使用。
在这里我们将导入我们将使用的 javascript 文件、机器学习和深度学习库。
<html>
<head>
<title>PoseNet Detection</title>
</head>
<body>