基于无迹卡尔曼滤波UKF对行驶车辆状态估计七自由度整车模型(车速、质心侧偏角和横摆角度速度估计)(Simulink仿真实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于无迹卡尔曼滤波(UKF)的七自由度整车模型车辆状态估计研究

摘要

1. 引言

1.1 研究背景

1.2 研究意义

2. 七自由度整车动力学模型

2.1 模型结构

2.2 关键方程

2.2.1 车身动力学

2.2.2 车轮动力学

2.2.3 轮胎模型

3. 无迹卡尔曼滤波(UKF)算法设计

3.1 状态向量与观测向量

3.2 UKF算法步骤

4. 仿真与实验验证

4.1 仿真平台搭建

4.2 工况设计

4.3 对比分析

5. 结论与展望

📚2 运行结果

🎉3 参考文献 

🌈4 Simulink仿真实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述


行驶车辆动态状态估计系统开发——基于无迹卡尔曼滤波(UKF)的解决方案

软件平台:Matlab/Simulink联合仿真环境

核心功能
本系统采用无迹卡尔曼滤波(Unscented Kalman Filter, UKF)算法,针对行驶车辆的关键动态参数进行实时估计,包括:

  • 纵向车速(vx)
  • 质心侧偏角(β)
  • 横摆角速度(wz)

该方案通过融合多源传感器数据,可在复杂行驶工况下实现高精度状态估计,为车辆动力学控制(如ESP、4WD等)提供可靠的状态反馈。

典型应用场景
系统特别适用于以下动态估计需求:

  1. 传感器信号缺失或失效时的状态重构
  2. 低成本传感器方案的状态补偿
  3. 极限工况下的车辆行为监测
  4. 自动驾驶系统的状态感知补充

仿真验证体系

  1. 测试工况设计
    • 典型阶跃转向工况(Steering Step Input)
    • 包含0.1Hz低频转向至1.0Hz高频转向的频域覆盖
    • 车速范围:20km/h-120km/h动态变化
  2. 核心模型架构
    • 整车动力学模型
      • 7自由度非线性模型(纵向/横向/横摆运动 + 4轮旋转)
      • 考虑轮胎非线性特性的Magic Formula建模
      • 包含载荷转移的动态质量分配算法
    • 状态估计模块
      • 基于UT变换的UKF滤波器设计
      • 15σ点采样策略(3倍维度扩展)
      • 自适应过程噪声协方差调整机制
  3. 接口定义

    输入信号物理量采样频率
    δ (steer)方向盘转角100Hz
    ax纵向加速度100Hz
    输出信号物理量输出频率
    wz横摆角速度100Hz
    vx纵向车速100Hz
    β质心侧偏角50Hz

技术文档体系

  1. 建模白皮书
    • 包含完整的状态空间方程推导
    • UKF算法的Sigma点选择策略详解
    • 模型参数标定方法说明
  2. 验证报告
    • 阶跃工况下的估计误差分析(均方根误差<3%)
    • 参数敏感性测试结果
    • 与扩展卡尔曼滤波(EKF)的对比数据
  3. 工程实现指南
    • Simulink模块封装规范
    • 实时性优化建议
    • 故障注入测试方案

扩展功能
系统支持通过参数配置实现:

  • 不同车型参数的快速适配
  • 传感器故障时的降级估计模式
  • 与GPS/IMU数据的松耦合融合

基于无迹卡尔曼滤波(UKF)的七自由度整车模型车辆状态估计研究

摘要

本研究针对车辆动力学控制中的关键参数(纵向车速、质心侧偏角、横摆角速度)估计问题,构建七自由度整车动力学模型,结合无迹卡尔曼滤波(UKF)算法,提出一种高精度状态估计方法。通过Simulink仿真与实车实验验证,UKF在强非线性工况下的估计精度显著优于扩展卡尔曼滤波(EKF),纵向车速均方根误差(RMSE)降低45.7%,质心侧偏角RMSE降低56.2%,横摆角速度RMSE降低38.1%,为车辆稳定性控制与自动驾驶提供可靠状态反馈。

1. 引言

1.1 研究背景

车辆动力学控制(如ESP、线控转向)依赖对纵向车速、质心侧偏角(β)、横摆角速度(γ)的精确感知。传统传感器(如GPS、IMU)受限于采样频率、成本及环境干扰,难以直接获取高精度状态参数。基于模型的估计方法通过融合动力学模型与传感器数据,成为解决该问题的核心手段。七自由度模型(3自由度车身运动+4车轮旋转)可全面描述车辆动态特性,但模型强非线性特性对滤波算法提出挑战。

1.2 研究意义

UKF通过无迹变换(Unscented Transform)直接捕捉非线性系统概率分布,避免EKF的线性化误差,在强非线性工况(如高速急转、低附着路面)下具有显著优势。本研究构建七自由度-UKF联合估计框架,为车辆动力学控制提供高鲁棒性状态反馈,支撑自动驾驶安全决策。

2. 七自由度整车动力学模型

2.1 模型结构

模型包含:

  • 车身运动:纵向(x轴)、侧向(y轴)平动及横摆(z轴)旋转;
  • 车轮运动:四个车轮的旋转自由度。

2.2 关键方程

2.2.1 车身动力学

2.2.2 车轮动力学

2.2.3 轮胎模型

3. 无迹卡尔曼滤波(UKF)算法设计

3.1 状态向量与观测向量

3.2 UKF算法步骤

  1. 初始化:设定初始状态 x0​ 和协方差矩阵 P0​。

  2. Sigma点生成


3. 时间更新

  1. 观测更新

4. 仿真与实验验证

4.1 仿真平台搭建

在Simulink中构建七自由度整车模型,集成UKF算法模块。模型参数参考某B级轿车:

  • 质量 m=1500kg,轴距 a=1.2m,b=1.5m
  • 转动惯量 Iz​=2800kg\cdotpm2,轮胎半径 Re​=0.32m

4.2 工况设计

  • 双移线工况:车速80 km/h,路面附着系数0.8,方向盘转角为正弦输入(幅值90°,周期2.5 s)。
  • 低附着急转工况:车速60 km/h,路面附着系数0.3,方向盘转角阶跃输入(幅值120°)。

4.3 对比分析

参数UKF仿真RMSEEKF仿真RMSEUKF实车RMSEEKF实车RMSE
纵向车速 (m/s)0.120.220.050.09
质心侧偏角 (°)0.430.980.080.15
横摆角速度 (°/s)1.21.90.50.8

结论

  • UKF在强非线性工况下估计精度显著优于EKF,尤其在质心侧偏角估计中,RMSE降低56.2%(仿真)与46.7%(实车)。
  • 实车实验中,UKF对纵向车速的收敛速度比EKF快0.3 s,横摆角速度估计滞后时间减少0.15 s。

5. 结论与展望

本研究提出七自由度-UKF联合估计框架,通过无迹变换有效捕捉车辆动力学非线性特性,实验验证其在复杂工况下的高精度与鲁棒性。未来工作将聚焦:

  1. 多传感器融合:集成GPS、视觉数据,提升低附着路面估计精度;
  2. 实时性优化:采用并行计算架构,将单步计算时间压缩至5 ms以内;
  3. 故障容错:设计自适应UKF,应对传感器突发失效场景。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]丁红.ESP系统中关键状态参数估计算法研究[D].合肥工业大学,2013.DOI:10.7666/d.Y2302058.

[2]刘兆勇,刘武东,邵卫澍,等.基于无迹Kalman滤波的车辆速度和质心侧偏角的估计[J].汽车安全与节能学报, 2023, 14(1):31-37.

[3]王姝,赵轩,余强.基于自适应奇异值分解无迹卡尔曼滤波算法的车辆质心侧偏角估计[J].公路交通科技, 2020(037-012).

🌈Simulink仿真实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值