旋转矩阵的理解

文章详细介绍了旋转矩阵和平移向量在描述不同坐标系之间变换的关系,通过数学公式阐述了旋转和平移如何影响点在不同坐标系中的坐标表示,以及如何通过这些变换描述物体或坐标系的位置变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵 R12\boldsymbol{R}_{12}R12 是旋转矩阵,其描述了坐标系1到坐标系2的旋转。矩阵 R12\boldsymbol{R}_{12}R12 的下标有两个含义:

  • 表示坐标系1到坐标系2的旋转
  • 表示将坐标系2中点的坐标通过旋转变换,从而得到同一个点在坐标系1中的坐标

向量 t12\boldsymbol{t}_{12}t12 是平移向量,其描述了坐标系1到坐标系2的平移。其下标同样也有两个含义:

  • 表示坐标系1到坐标系2的平移(对应坐标系1的原点指向坐标系2的原点的向量)
  • 表示将坐标系2中点的坐标通过平移变换,从而得到同一个点在坐标系1中的坐标

首先看一个简单的例子
在这里插入图片描述

如图1,P0,P1P_0, P_1P0,P1是坐标系 WWW 下的两个点,其中 P1P_1P1P0P_0P0 旋转 θ\thetaθ (逆时针为正)而来,则二者之间的坐标满足关系:
x1=r∗cos⁡(θ+θ0)=r∗cos⁡(θ)cos⁡(θ0)−r∗sin⁡(θ)sin⁡(θ0)=x0∗cos⁡(θ)−y0∗sin⁡(θ)y1=r∗sin⁡(θ+θ0)=r∗sin⁡(θ)cos⁡(θ0)+r∗cos⁡(θ)sin⁡(θ0)=x0∗sin⁡(θ)+y0∗cos⁡(θ) \begin{aligned} x_1 &= r * \cos(\theta + \theta_0) \\ &= r * \cos(\theta)\cos(\theta_0) - r*\sin(\theta)\sin(\theta_0) \\ &= x_0 * \cos(\theta) - y_0*\sin(\theta) \\ y_1 &= r * \sin(\theta + \theta_0) \\ &= r * \sin(\theta)\cos(\theta_0) + r*\cos(\theta)\sin(\theta_0) \\ & = x_0 * \sin(\theta) + y_0*\cos(\theta) \\ \end{aligned} x1y1=rcos(θ+θ0)=rcos(θ)cos(θ0)rsin(θ)sin(θ0)=x0cos(θ)y0sin(θ)=rsin(θ+θ0)=rsin(θ)cos(θ0)+rcos(θ)sin(θ0)=x0sin(θ)+y0cos(θ)
P1=RP0P_1 = RP_0P1=RP0, 其中
R=(cos⁡(θ)−sin⁡(θ)sin⁡(θ)cos⁡(θ)) R = \begin{pmatrix} \cos(\theta)& -\sin(\theta) \\ \sin(\theta)& \cos(\theta) \\ \end{pmatrix} R=(cos(θ)sin(θ)sin(θ)cos(θ))
这个比较容易理解了,不多赘述。

如图2,P1P_1P1P0P_0P0 在旋转之后多了一个平移而来,则 P0,P1P_0, P_1P0,P1 之间的关系为:
P1=RP0+tP_1 = RP_0 + tP1=RP0+t, 其中 t=(Δx,Δy)Tt = (\Delta x, \Delta y)^Tt=(Δx,Δy)T


现在我们换一种角度,不再将点看作普通的点,而是一个新坐标系的原点,如图3。那么如何描述从一个坐标系到另一个坐标系呢? 例如在图3中,将 WWW 坐标系转到 P0P_0P0 坐标系,那么可以仿照上述两个例子写出这个变换:
R=(cos⁡(θ0)−sin⁡(θ0)sin⁡(θ0)cos⁡(θ0)),t=(x0y0) R = \begin{pmatrix} \cos(\theta_0)& -\sin(\theta_0) \\ \sin(\theta_0)& \cos(\theta_0) \\ \end{pmatrix}, t = \begin{pmatrix} x_0 \\ y_0 \\ \end{pmatrix} R=(cos(θ0)sin(θ0)sin(θ0)cos(θ0)),t=(x0y0)

其中 (x0,y0)(x_0, y_0)(x0,y0)P0P_0P0 坐标系原点在 WWW 坐标系下的表示, θ0\theta_0θ0 是坐标系旋转的角度.
具体地, 对于 P0P_0P0 坐标系描述下的一点 p(xp,yp)p(x_p, y_p)p(xp,yp), 其在 WWW 坐标系下的表示为
(xwyw)=R(xpyp)+t \begin{pmatrix} x_w \\ y_w \\ \end{pmatrix} = R \begin{pmatrix} x_p \\ y_p \\ \end{pmatrix} + t (xwyw)=R(xpyp)+t
注意!此时我们称 TP0W=(Rt01)T_{P_0}^W = \begin{pmatrix} R & t \\ 0 & 1 \\ \end{pmatrix}TP0W=(R0t1)WWW 坐标系 到 P0P_0P0 坐标系的变换,它可以将 点在 P0P_0P0 坐标系的表示 转为在 WWW 坐标系的表示
通常,WWW 坐标系 到 P0P_0P0 坐标系的变换 称为 PPP 的位姿。这种称呼比较好理解,因为 TP0WT_{P_0}^WTP0Wttt 部分刚好就是 P0P_0P0 在世界坐标系中的坐标,用欧拉角表示旋转的话,这个角度就是WWW 转到 P0P_0P0 的角度(逆时针为正)。另一方面,也可以将其视做在 WWW 的基础上的旋转和平移变化。


在这里插入图片描述

最后一个例子,如图4,一辆车从 P0P_0P0 移动到 P1P_1P1,它们也被两个时刻下的车坐标系,那么如何描述它们之间的变换呢?
显然根据上述例子,我们很容易地得到 WWW 坐标系到两个车坐标系的变换:
RRR 描述 从 WWW 转到 目标系 的 角度,ttt 是 从WWW原点指向 目标系原点 的向量 在 WWW 系下的表示,即
RP0W=(cos⁡θ0−sin⁡θ0sin⁡θ0cos⁡θ0),t=(x0y0)RP1W=(cos⁡θ1−sin⁡θ1sin⁡θ1cos⁡θ1),t=(x1y1) \begin{aligned} R_{P_0}^W &= \begin{pmatrix} \cos\theta_0 & -\sin\theta_0 \\ \sin\theta_0 & \cos\theta_0 \\ \end{pmatrix}, t = \begin{pmatrix} x_0 \\ y_0 \\ \end{pmatrix} \\ R_{P_1}^W &= \begin{pmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \\ \end{pmatrix}, t = \begin{pmatrix} x_1 \\ y_1 \\ \end{pmatrix} \\ \end{aligned} RP0WRP1W=(cosθ0sinθ0sinθ0cosθ0),t=(x0y0)=(cosθ1sinθ1sinθ1cosθ1),t=(x1y1)

  • 坐标系变换的角度来看,P0P_0P0P1P_1P1 的变换等同于 P0P_0P0WWW,再从 WWWP1P_1P1, 即
    TP1P0=(TP0W)TTP1W T_{P_1}^{P_0} = \begin{pmatrix} T_{P_0}^{W} \end{pmatrix}^T T_{P_1}^{W} TP1P0=(TP0W)TTP1W
    具体地,我们也可以直接根据规则直接写出二者之间的变换,令 θ=θ1−θ0\theta = \theta_1 - \theta_0θ=θ1θ0,
    RP1P0=(cos⁡θ−sin⁡θsin⁡θsin⁡θ)tP1P0=(RP0W)T(tP1W−tP0W) \begin{aligned} R_{P_1}^{P_0} &= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \sin\theta \\ \end{pmatrix} \\ t_{P_1}^{P_0} &= \begin{pmatrix} R_{P_0}^W \end{pmatrix}^T (t_{P_1}^W - t_{P_0}^W) \end{aligned} RP1P0tP1P0=(cosθsinθsinθsinθ)=(RP0W)T(tP1WtP0W)
  • 坐标点转换来看,上述变换又可解释为 将 点在P1P_1P1坐标系下的表示 转到 点在P0P_0P0坐标系的表示,即
    p0=TP1P0p1=(TP0W)TTP1Wp1 p_0 = T_{P_1}^{P_0} p_1 = \begin{pmatrix} T_{P_0}^{W} \end{pmatrix}^T T_{P_1}^{W} p_1 p0=TP1P0p1=(TP0W)TTP1Wp1
<think>好的,我现在需要帮助用户理解如何将组合的旋转矩阵转换为四元数。首先,我得回忆一下旋转矩阵四元数之间的关系。旋转矩阵是三维空间中描述旋转的常用方式,而四元数则是一种更简洁且无万向节锁问题的表示方法。用户提到的“组合的旋转矩阵”可能指的是多个旋转组合后的结果矩阵,比如先绕X轴旋转,再绕Y轴,再绕Z轴,或者其他顺序的组合。这时候需要将最终的旋转矩阵转换为对应的四元数。 首先,我需要明确旋转矩阵到四元数的转换方法。一般来说,给定一个旋转矩阵R,可以通过矩阵的迹来找到四元数的各个分量。四元数的四个分量(w, x, y, z)可以通过以下公式计算: 如果R是3x3的旋转矩阵,那么: w = √(1 + R11 + R22 + R33) / 2 x = (R32 - R23) / (4w) y = (R13 - R31) / (4w) z = (R21 - R12) / (4w) 不过,这种方法在矩阵的迹较大时比较稳定,但当迹较小时,可能需要用其他分量的计算来避免除以零的问题。因此,通常需要检查矩阵中哪个对角线元素(R11, R22, R33)最大,然后选择不同的计算公式。 比如,当R11是最大的时候,可以计算: x = √(1 + R11 - R22 - R33) / 2 w = (R32 - R23) / (4x) y = (R12 + R21) / (4x) z = (R13 + R31) / (4x) 类似地,当R22或R33最大时,调整相应的计算方式。这样能确保在数值计算中的稳定性。 接下来,用户提到的“组合的旋转矩阵”可能涉及到多个旋转矩阵的乘积。例如,一个旋转可能是由绕不同轴的旋转组合而成,如欧拉角顺序XYZ的旋转,对应的旋转矩阵R = Rz * Ry * Rx。这时候,需要将整个组合后的R转换为四元数。不过,四元数的乘法顺序与旋转矩阵相反,因为四元数旋转是按照左乘的顺序,而矩阵是右乘的。因此,组合旋转对应的四元数应该是各个单独旋转四元数的逆序乘积。例如,如果旋转矩阵是R = R1 * R2 * R3,对应的四元数q = q3 * q2 * q1,因为四元数乘法是右乘的,即先应用q1,再q2,再q3。 因此,用户在转换组合旋转矩阵时,可能需要先将整个旋转矩阵分解为各个基本旋转的组合,或者直接根据整个矩阵来计算对应的四元数。不过直接转换整个矩阵可能更高效,不需要分解步骤。这时候需要使用前面提到的迹的方法,或者另一种方法是利用旋转矩阵与四元数的对应关系。 另一个需要注意的问题是,四元数表示旋转时,q-q代表相同的旋转,因此在转换时可能会有符号差异,需要根据具体应用来确定是否需要统一符号。 此外,还需要验证旋转矩阵是否有效,即是否为正交矩阵,行列式是否为1,否则需要先进行正交化处理,这可能会影响转换的准确性。 总结步骤可能是: 1. 确认旋转矩阵是有效的正交矩阵(行列式为1,每行每列都是单位向量且正交)。 2. 根据旋转矩阵的迹或其他对角线元素的最大值选择对应的计算公式,计算四元数的各个分量。 3. 处理可能的符号问题,确保四元数的单位化。 4. 如果旋转矩阵是多个旋转组合的结果,可能需要考虑四元数的乘法顺序是否正确,或者在转换时已经包含了所有旋转的组合效果。 在具体实现时,还需要考虑数值稳定性,例如当w接近零时,使用其他分量来计算,避免除以零的错误。这可能需要多个条件判断,选择合适的分量作为计算基准。 举个例子,假设组合旋转矩阵R是由绕X轴旋转θ,再绕Y轴旋转φ,那么矩阵R = Ry(φ) * Rx(θ)。对应的四元数应该是q = qy(φ) * qx(θ),其中qxqy分别是绕XY轴旋转的四元数。而如果直接转换R为四元数,应该得到相同的q,这可以通过上述的转换公式来验证。 因此,用户的问题可能是在问如何将这种组合后的旋转矩阵直接转换为四元数,而无需分解为各个单独的旋转。这时候,直接应用旋转矩阵到四元数的转换公式即可,无需考虑组合的顺序,因为矩阵本身已经包含了所有旋转的累积效果。但需要确保转换过程的数值稳定性,选择合适的计算路径。 最后,可能需要提醒用户注意四元数到旋转矩阵转换时的可能误差,以及在实际应用中如何处理符号问题,保证四元数的单位长度等。</think>将组合的旋转矩阵转换为四元数的过程需要以下步骤: --- ### **1. 理解旋转矩阵与四元数的关系** - **旋转矩阵**:一个正交矩阵(行列式为1),表示三维空间中的旋转变换。 - **四元数**:一种四维复数形式 $q = w + xi + yj + zk$,满足单位约束 $w^2 + x^2 + y^2 + z^2 = 1$,可高效表示旋转。 --- ### **2. 转换公式** 给定旋转矩阵 $R = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$,四元数分量 $(w, x, y, z)$ 可通过以下步骤计算: #### **步骤1:计算迹并选择公式分支** - **迹**:$t = m_{11} + m_{22} + m_{33}$ - 根据迹的最大值符号选择分支,避免数值不稳定: - 若 $t > 0$: $$ w = \frac{\sqrt{1 + t}}{2}, \quad x = \frac{m_{32} - m_{23}}{4w}, \quad y = \frac{m_{13} - m_{31}}{4w}, \quad z = \frac{m_{21} - m_{12}}{4w} $$ - 若 $m_{11} > m_{22}$ 且 $m_{11} > m_{33}$: $$ x = \frac{\sqrt{1 + m_{11} - m_{22} - m_{33}}}{2}, \quad w = \frac{m_{32} - m_{23}}{4x}, \quad y = \frac{m_{12} + m_{21}}{4x}, \quad z = \frac{m_{13} + m_{31}}{4x} $$ - 若 $m_{22} > m_{33}$: $$ y = \frac{\sqrt{1 - m_{11} + m_{22} - m_{33}}}{2}, \quad w = \frac{m_{13} - m_{31}}{4y}, \quad x = \frac{m_{12} + m_{21}}{4y}, \quad z = \frac{m_{23} + m_{32}}{4y} $$ - 否则: $$ z = \frac{\sqrt{1 - m_{11} - m_{22} + m_{33}}}{2}, \quad w = \frac{m_{21} - m_{12}}{4z}, \quad x = \frac{m_{13} + m_{31}}{4z}, \quad y = \frac{m_{23} + m_{32}}{4z} $$ #### **步骤2:单位化四元数** 确保四元数满足单位约束: $$ w^2 + x^2 + y^2 + z^2 = 1 $$ --- ### **3. 组合旋转的处理** 若旋转矩阵是多个旋转的组合(如 $R = R_z R_y R_x$),转换后的四元数需按**相反顺序**组合: $$ q_{\text{total}} = q_z \cdot q_y \cdot q_x $$ 其中 $\cdot$ 表示四元数乘法。 --- ### **4. 代码实现示例(Python)** ```python import numpy as np def matrix_to_quaternion(R): m = R.reshape(3,3) t = np.trace(m) if t > 0: w = np.sqrt(1 + t) / 2 x = (m[2,1] - m[1,2]) / (4 * w) y = (m[0,2] - m[2,0]) / (4 * w) z = (m[1,0] - m[0,1]) / (4 * w) else: if m[0,0] > m[1,1] and m[0,0] > m[2,2]: x = np.sqrt(1 + m[0,0] - m[1,1] - m[2,2]) / 2 w = (m[2,1] - m[1,2]) / (4 * x) y = (m[0,1] + m[1,0]) / (4 * x) z = (m[0,2] + m[2,0]) / (4 * x) elif m[1,1] > m[2,2]: y = np.sqrt(1 - m[0,0] + m[1,1] - m[2,2]) / 2 w = (m[0,2] - m[2,0]) / (4 * y) x = (m[0,1] + m[1,0]) / (4 * y) z = (m[1,2] + m[2,1]) / (4 * y) else: z = np.sqrt(1 - m[0,0] - m[1,1] + m[2,2]) / 2 w = (m[1,0] - m[0,1]) / (4 * z) x = (m[0,2] + m[2,0]) / (4 * z) y = (m[1,2] + m[2,1]) / (4 * z) # 单位化 q = np.array([w, x, y, z]) return q / np.linalg.norm(q) ``` --- ### **5. 注意事项** - **符号问题**:四元数 $q$ $-q$ 表示同一旋转,需根据应用统一符号。 - **数值稳定性**:当迹接近零时,需选择合适分支避免除以零。 - **正交性验证**:确保输入矩阵是有效的旋转矩阵(正交且行列式为1)。 通过以上步骤,可将任意组合的旋转矩阵转换为等效的四元数表示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值