【AI面试】BN(Batch Norm)批量归一化

批量归一化(BN)是为了解决深度学习中内部协变量转移问题,加速训练并提高模型性能。BN通过计算批次数据的均值和方差进行归一化,然后应用可学习的参数进行调整。它通常应用于全连接层和卷积层的激活函数前。在推理阶段,使用训练阶段统计的全局均值和方差。BN与Layer Normalization(LN)的区别在于BN沿通道维度归一化,而LN对每个样本的所有通道进行归一化。BN在图像处理中表现良好,而在NLP中,LN可能更合适。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在提到批量归一化的面试问题时候,一般会以以下几种形式提问:

  1. 为什么要引入BN
  2. BN解决了什么问题?
  3. BN的公式是怎样的?
  4. BN公式中,有哪些参数是可学的?
  5. BN中,均值和方差的尺寸shape是什么样子的?
  6. BN在训练阶段和验证阶段,有什么不同?

本文就围绕上述的问题,展开来说,希望对你有帮助。如果真有,麻烦给个赞👍,支持一波。

后面的内容主要是学习了沐神的视频,进行了一些理解和补充。感兴趣的可以直接去看原视频,视频链接:批量归一化【动手学深度学习v2】

一、批量归一化概念

1.1、为什么要引入批量归一化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值