【AI面试】hard label与soft label,Label Smoothing Loss 和 Smooth L1 Loss

本文介绍了深度学习中从One-hot硬标签到Soft标签的转变,探讨了Label Smoothing Loss和Smooth L1 Loss的原理与应用。Label Smoothing通过平滑标签,缓解了过拟合问题,提高了模型的泛化能力,尤其适用于类别特征差异小的分类任务。同时,文章还讨论了Label Smoothing在不同任务中的效果和潜在的改进方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

往期文章:

  1. AI/CV面试,直达目录汇总
  2. 【AI面试】NMS 与 Soft NMS 的辨析
  3. 【AI面试】L1 loss、L2 loss和Smooth L1 Loss,L1正则化和L2正则化


在一次询问 chatGPT时候,在他的回答中,由smooth L1联想提到了 Label Smoothing Loss 。我把问题贴到下面,和 chatGPT的回答,供你参考。不知道你是不是也在使用 chatGPT,后面针对这个思考也可以一起交流下。

smooth

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值